Find The Exact Value Of Cos 3 Pi/8 + Cos Pi/8 

Find The Exact Value Of Cos 3 Pi/8 + Cos Pi/8 

The Correct Answer and Explanation is :

To find the exact value of ( \cos\left(\frac{3\pi}{8}\right) + \cos\left(\frac{\pi}{8}\right) ), we can utilize trigonometric identities and known values of cosine at specific angles.

Step 1: Recognize Known Values

We start by recalling the exact values of cosine for certain standard angles:

  • ( \cos\left(\frac{\pi}{8}\right) = \sqrt{\frac{2 + \sqrt{2}}{4}} )
  • ( \cos\left(\frac{3\pi}{8}\right) = \sqrt{\frac{2 – \sqrt{2}}{4}} )

These values are derived from half-angle identities and are well-established in trigonometric tables.

Step 2: Apply the Sum of Cosines Identity

The sum of cosines identity states:

[ \cos A + \cos B = 2 \cos\left(\frac{A + B}{2}\right) \cdot \cos\left(\frac{A – B}{2}\right) ]

Let ( A = \frac{3\pi}{8} ) and ( B = \frac{\pi}{8} ). Applying the identity:

[ \cos\left(\frac{3\pi}{8}\right) + \cos\left(\frac{\pi}{8}\right) = 2 \cos\left(\frac{\frac{3\pi}{8} + \frac{\pi}{8}}{2}\right) \cdot \cos\left(\frac{\frac{3\pi}{8} – \frac{\pi}{8}}{2}\right) ]

Simplifying the angles:

[ = 2 \cos\left(\frac{4\pi}{16}\right) \cdot \cos\left(\frac{2\pi}{16}\right) ]

[ = 2 \cos\left(\frac{\pi}{4}\right) \cdot \cos\left(\frac{\pi}{8}\right) ]

Step 3: Substitute Known Values

We know that:

  • ( \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} )
  • ( \cos\left(\frac{\pi}{8}\right) = \sqrt{\frac{2 + \sqrt{2}}{4}} )

Substituting these into the equation:

[ \cos\left(\frac{3\pi}{8}\right) + \cos\left(\frac{\pi}{8}\right) = 2 \times \frac{\sqrt{2}}{2} \times \sqrt{\frac{2 + \sqrt{2}}{4}} ]

Simplifying:

[ = \sqrt{2} \times \sqrt{\frac{2 + \sqrt{2}}{4}} ]

[ = \sqrt{\frac{2 \times (2 + \sqrt{2})}{4}} ]

[ = \sqrt{\frac{4 + 2\sqrt{2}}{4}} ]

[ = \sqrt{1 + \frac{\sqrt{2}}{2}} ]

Step 4: Final Simplification

[ = \sqrt{\frac{2 + \sqrt{2}}{2}} ]

Therefore, the exact value of ( \cos\left(\frac{3\pi}{8}\right) + \cos\left(\frac{\pi}{8}\right) ) is ( \sqrt{\frac{2 + \sqrt{2}}{2}} ).

Conclusion

By applying trigonometric identities and utilizing known values of cosine at specific angles, we have determined that the exact value of ( \cos\left(\frac{3\pi}{8}\right) + \cos\left(\frac{\pi}{8}\right) ) is ( \sqrt{\frac{2 + \sqrt{2}}{2}} ).

Scroll to Top