Object Nut Die Marble Water Volume Without Object (mL) 25 25 25 Water Volume With Object (mL) 27 29 27 Object Volume (mL) 1.35

Object Nut Die Marble Water Volume Without Object (mL) 25 25 25 Water Volume With Object (mL) 27 29 27 Object Volume (mL) 1.35

The Correct Answer and Explanation is :

It looks like you are working with an experiment that involves determining the volume of an object based on the displacement of water. The data you’ve provided includes measurements of water volume before and after submerging objects. The general principle here is Archimedes’ principle, which states that the volume of an object submerged in a liquid is equal to the volume of the liquid displaced by the object.

Data Breakdown:

You have three objects: Nut, Die, and Marble. The data shows the volume of water before and after submerging each object:

ObjectWater Volume Without Object (mL)Water Volume With Object (mL)Object Volume (mL)
Nut25271.35
Die25291.35
Marble25271.35

Calculation:

To find the volume of each object, we subtract the initial water volume from the final volume. The difference gives us the volume of displaced water, which is equal to the volume of the object submerged in the water.

For each object:

  1. Nut:
  • Volume displaced = 27 mL – 25 mL = 2 mL
  • The volume of the nut is 2 mL.
  1. Die:
  • Volume displaced = 29 mL – 25 mL = 4 mL
  • The volume of the die is 4 mL.
  1. Marble:
  • Volume displaced = 27 mL – 25 mL = 2 mL
  • The volume of the marble is 2 mL.

Explanation:

The method of calculating the volume of an object using water displacement is based on Archimedes’ principle. When an object is submerged in water, it displaces an amount of water equal to the volume of the object. The increase in water level after the object is submerged corresponds directly to the volume of the object itself.

In the table, we see that when the nut, die, and marble are placed in the water, the water level rises. By subtracting the original water volume from the new water volume, we can determine how much space the object occupies. For example, when the nut was placed in the water, the volume increased by 2 mL, meaning the nut’s volume is 2 mL.

Conclusion:

From the data, the volume of the nut and marble is both 2 mL, and the die’s volume is 4 mL. The calculated object volumes provide an understanding of how each object interacts with the water, allowing for accurate measurements using displacement. The value of 1.35 mL provided in the data seems like an error or irrelevant to the specific volume calculations of the objects in the table.

Scroll to Top