How do they get rid of the “ln” in the second to last step to get the K'eq?
I tried to divide the 5.56 by the ln (5.56/ln) but it didn't give me the 260 like they got.
The correct answer and explanation is:
The confusion arises because “ln” refers to the natural logarithm, which is the inverse of the exponential function. To clarify the process for obtaining KeqK_{\text{eq}}, let’s break it down step by step:
- Equation Setup: From the second-to-last step, we have: ΔG∘=−RTlnKeq\Delta G^\circ = -RT \ln K_{\text{eq}} where:
- ΔG∘=−3.2 kJ/mol=−3200 J/mol\Delta G^\circ = -3.2 \, \text{kJ/mol} = -3200 \, \text{J/mol},
- R=8.314 J/(mol\cdotpK)R = 8.314 \, \text{J/(mol·K)},
- T=298 KT = 298 \, \text{K}.
- Rearrange for KeqK_{\text{eq}}: lnKeq=−ΔG∘RT\ln K_{\text{eq}} = -\frac{\Delta G^\circ}{RT}
- Calculate lnKeq\ln K_{\text{eq}}: Substitute the values: lnKeq=−−32008.314×298\ln K_{\text{eq}} = -\frac{-3200}{8.314 \times 298} Simplify: lnKeq=32002478.572≈1.29\ln K_{\text{eq}} = \frac{3200}{2478.572} \approx 1.29
- Solve for KeqK_{\text{eq}}: To find KeqK_{\text{eq}}, take the exponential of both sides: Keq=elnKeq=e1.29K_{\text{eq}} = e^{\ln K_{\text{eq}}} = e^{1.29} Use a calculator: Keq≈e1.29≈3.64K_{\text{eq}} \approx e^{1.29} \approx 3.64
If you provide the exact details from your question or the original ΔG∘\Delta G^\circ and parameters, I can confirm or refine this explanation further. The value you’re trying to get—like 260—might arise from different parameter values or units.