Find the 35th derivative of the function f(x)-cos(2x) at x=I Hint : find the pattern ofthe nth: derivative of the function with n=35_

Find the 35th derivative of the function f(x)-cos(2x) at x=I Hint : find the pattern ofthe nth: derivative of the function with n=35_

The Correct Answer and Explanation is:

To find the 35th derivative of the function f(x)=cos⁡(2x)f(x) = \cos(2x)f(x)=cos(2x)

at x=ix = ix=i, we first analyze the pattern of the nnnth derivative of the cosine function.


Step 1: Understand the derivative pattern

Let’s compute the first few derivatives of f(x)=cos⁡(2x)f(x) = \cos(2x)f(x)=cos(2x):

  • f(0)(x)=cos⁡(2x)f^{(0)}(x) = \cos(2x)f(0)(x)=cos(2x)
  • f(1)(x)=−2sin⁡(2x)f^{(1)}(x) = -2\sin(2x)f(1)(x)=−2sin(2x)
  • f(2)(x)=−4cos⁡(2x)f^{(2)}(x) = -4\cos(2x)f(2)(x)=−4cos(2x)
  • f(3)(x)=8sin⁡(2x)f^{(3)}(x) = 8\sin(2x)f(3)(x)=8sin(2x)
  • f(4)(x)=16cos⁡(2x)f^{(4)}(x) = 16\cos(2x)f(4)(x)=16cos(2x)

A clear pattern emerges:

  • The derivative alternates between cosine and sine.
  • The coefficients follow powers of 2.
  • The signs follow a cycle: +,−,−,++, -, -, ++,−,−,+ and repeat every 4 steps.

In general, the nnnth derivative of f(x)=cos⁡(2x)f(x) = \cos(2x)f(x)=cos(2x) is: f(n)(x)=2n⋅cos⁡(2x+nπ2)f^{(n)}(x) = 2^n \cdot \cos\left(2x + n\frac{\pi}{2} \right)f(n)(x)=2n⋅cos(2x+n2π​)

This uses the identity for successive derivatives of cosine with a phase shift.


Step 2: Plug in n=35n = 35n=35 and x=ix = ix=i

Using the general form: f(35)(x)=235⋅cos⁡(2x+35π2)f^{(35)}(x) = 2^{35} \cdot \cos\left(2x + 35\frac{\pi}{2} \right)f(35)(x)=235⋅cos(2x+352π​)

Substitute x=ix = ix=i: f(35)(i)=235⋅cos⁡(2i+35π2)f^{(35)}(i) = 2^{35} \cdot \cos\left(2i + \frac{35\pi}{2} \right)f(35)(i)=235⋅cos(2i+235π​)

Now use the identity: cos⁡(a+b)=cos⁡acos⁡b−sin⁡asin⁡b\cos(a + b) = \cos a \cos b – \sin a \sin bcos(a+b)=cosacosb−sinasinb

Let a=2ia = 2ia=2i, b=35π2b = \frac{35\pi}{2}b=235π​

We first find:

  • cos⁡(2i)=cosh⁡(2)\cos(2i) = \cosh(2)cos(2i)=cosh(2) because cos⁡(iz)=cosh⁡(z)\cos(iz) = \cosh(z)cos(iz)=cosh(z)
  • sin⁡(2i)=isinh⁡(2)\sin(2i) = i \sinh(2)sin(2i)=isinh(2) because sin⁡(iz)=isinh⁡(z)\sin(iz) = i \sinh(z)sin(iz)=isinh(z)

Now find the angle: 35π2=8⋅2π+3π2⇒cos⁡(35π2)=cos⁡(3π2)=0,sin⁡(35π2)=−1\frac{35\pi}{2} = 8\cdot 2\pi + \frac{3\pi}{2} \Rightarrow \cos\left(\frac{35\pi}{2}\right) = \cos\left(\frac{3\pi}{2}\right) = 0, \quad \sin\left(\frac{35\pi}{2}\right) = -1235π​=8⋅2π+23π​⇒cos(235π​)=cos(23π​)=0,sin(235π​)=−1

So: cos⁡(2i+35π2)=cos⁡(2i)⋅0−sin⁡(2i)⋅(−1)=sin⁡(2i)=isinh⁡(2)\cos(2i + \tfrac{35\pi}{2}) = \cos(2i)\cdot 0 – \sin(2i)\cdot (-1) = \sin(2i) = i\sinh(2)cos(2i+235π​)=cos(2i)⋅0−sin(2i)⋅(−1)=sin(2i)=isinh(2)

Therefore: f(35)(i)=235⋅isinh⁡(2)f^{(35)}(i) = 2^{35} \cdot i\sinh(2)f(35)(i)=235⋅isinh(2)


Final Answer:

f(35)(i)=235⋅i⋅sinh⁡(2)\boxed{f^{(35)}(i) = 2^{35} \cdot i \cdot \sinh(2)}f(35)(i)=235⋅i⋅sinh(2)​


Explanation

To compute the 35th derivative of f(x)=cos⁡(2x)f(x) = \cos(2x)f(x)=cos(2x) at x=ix = ix=i, we begin by recognizing the periodic and structured behavior of trigonometric derivatives. The function cos⁡(2x)\cos(2x)cos(2x) alternates between cosine and sine on each differentiation, with coefficients increasing as powers of 2. Specifically, the nnnth derivative follows the pattern: f(n)(x)=2n⋅cos⁡(2x+nπ2)f^{(n)}(x) = 2^n \cdot \cos\left(2x + n\frac{\pi}{2}\right)f(n)(x)=2n⋅cos(2x+n2π​)

This result comes from the rotational symmetry of sine and cosine derivatives. Since cos⁡(2x)→−2sin⁡(2x)→−4cos⁡(2x)→8sin⁡(2x)→⋯\cos(2x) \rightarrow -2\sin(2x) \rightarrow -4\cos(2x) \rightarrow 8\sin(2x) \rightarrow \cdotscos(2x)→−2sin(2x)→−4cos(2x)→8sin(2x)→⋯, the nnnth derivative exhibits a predictable rotational shift in phase by π2\frac{\pi}{2}2π​ per differentiation.

Substituting n=35n = 35n=35, we get: f(35)(x)=235⋅cos⁡(2x+35π2)f^{(35)}(x) = 2^{35} \cdot \cos\left(2x + \frac{35\pi}{2}\right)f(35)(x)=235⋅cos(2x+235π​)

Next, we evaluate this at x=ix = ix=i, which is a complex number. Using Euler’s formulas and identities involving complex arguments, we rewrite the cosine of a complex angle: cos⁡(2i+35π2)=cos⁡(2i)cos⁡(35π2)−sin⁡(2i)sin⁡(35π2)\cos(2i + \tfrac{35\pi}{2}) = \cos(2i)\cos\left(\tfrac{35\pi}{2}\right) – \sin(2i)\sin\left(\tfrac{35\pi}{2}\right)cos(2i+235π​)=cos(2i)cos(235π​)−sin(2i)sin(235π​)

Knowing cos⁡(2i)=cosh⁡(2)\cos(2i) = \cosh(2)cos(2i)=cosh(2), sin⁡(2i)=isinh⁡(2)\sin(2i) = i\sinh(2)sin(2i)=isinh(2), and trigonometric values like cos⁡(35π2)=0\cos\left(\tfrac{35\pi}{2}\right) = 0cos(235π​)=0, sin⁡(35π2)=−1\sin\left(\tfrac{35\pi}{2}\right) = -1sin(235π​)=−1, we find: f(35)(i)=235⋅i⋅sinh⁡(2)f^{(35)}(i) = 2^{35} \cdot i \cdot \sinh(2)f(35)(i)=235⋅i⋅sinh(2)

This expression is the exact value of the 35th derivative at x=ix = ix=i.

Scroll to Top