Derive, for both the single particle and system of particles, the Work-Energy Principle or Work-Energy Theorem. 2. Draw a system of particles and write all the basic equations that describe the mechanics of a System of Particles. 3. Compare and contrast between Hamilton’s H and Lagrange’s L.
The Correct Answer and Explanation is:
1. Derivation of the Work-Energy Theorem
Single Particle:
Start with Newton’s Second Law:F⃗=ma⃗\vec{F} = m \vec{a}F=ma
Multiply both sides by the displacement dr⃗\vec{dr}dr:F⃗⋅dr⃗=ma⃗⋅dr⃗\vec{F} \cdot \vec{dr} = m \vec{a} \cdot \vec{dr}F⋅dr=ma⋅dr
Since a⃗=dv⃗dt\vec{a} = \frac{d\vec{v}}{dt}a=dtdv, and v⃗=dr⃗dt\vec{v} = \frac{d\vec{r}}{dt}v=dtdr, then:a⃗⋅dr⃗=dv⃗dt⋅v⃗dt=v⃗⋅dv⃗\vec{a} \cdot \vec{dr} = \frac{d\vec{v}}{dt} \cdot \vec{v} dt = \vec{v} \cdot d\vec{v}a⋅dr=dtdv⋅vdt=v⋅dv
Thus:F⃗⋅dr⃗=mv⃗⋅dv⃗\vec{F} \cdot \vec{dr} = m \vec{v} \cdot d\vec{v}F⋅dr=mv⋅dv
Integrating both sides:∫F⃗⋅dr⃗=∫mv⃗⋅dv⃗=12mv2−12mv02\int \vec{F} \cdot \vec{dr} = \int m \vec{v} \cdot d\vec{v} = \frac{1}{2} m v^2 – \frac{1}{2} m v_0^2∫F⋅dr=∫mv⋅dv=21mv2−21mv02
So,W=ΔKW = \Delta KW=ΔK
System of Particles:
Sum of external work on all particles equals change in total kinetic energy:∑Wext=ΔKtotal\sum W_{\text{ext}} = \Delta K_{\text{total}}∑Wext=ΔKtotal
Here, internal forces cancel due to Newton’s Third Law. So:∑i=1nF⃗ext,i⋅dr⃗i=Δ(∑i=1n12mivi2)\sum_{i=1}^{n} \vec{F}_{\text{ext},i} \cdot \vec{dr}_i = \Delta \left( \sum_{i=1}^{n} \frac{1}{2} m_i v_i^2 \right)i=1∑nFext,i⋅dri=Δ(i=1∑n21mivi2)
2. System of Particles and Basic Equations
Diagram (You can draw this by sketching several particles labeled m1,m2,…m_1, m_2, \ldotsm1,m2,… with external forces F⃗ext\vec{F}_{\text{ext}}Fext and internal forces between them)
Basic Equations:
- Total external force:
F⃗ext=Ma⃗CM\vec{F}_{\text{ext}} = M \vec{a}_{\text{CM}}Fext=MaCM
- Momentum conservation:
P⃗=∑miv⃗i\vec{P} = \sum m_i \vec{v}_iP=∑mivi
- Angular momentum about origin:
L⃗=∑r⃗i×miv⃗i\vec{L} = \sum \vec{r}_i \times m_i \vec{v}_iL=∑ri×mivi
- Torque:
τ⃗ext=dL⃗dt\vec{\tau}_{\text{ext}} = \frac{d\vec{L}}{dt}τext=dtdL
- Work-energy for system:
∑F⃗ext⋅dr⃗=ΔKtotal\sum \vec{F}_{\text{ext}} \cdot \vec{dr} = \Delta K_{\text{total}}∑Fext⋅dr=ΔKtotal
3. Comparison: Hamilton’s H vs Lagrange’s L
Lagrangian L=T−VL = T – VL=T−V
- It is the difference between kinetic and potential energy.
- Leads to Lagrange’s equations:
ddt(∂L∂q˙i)−∂L∂qi=0\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) – \frac{\partial L}{\partial q_i} = 0dtd(∂q˙i∂L)−∂qi∂L=0
- Best for systems with constraints and generalized coordinates.
Hamiltonian H=T+VH = T + VH=T+V (in many cases)
- Represents total energy if potential energy does not depend on velocity.
- Used in Hamilton’s equations:
q˙i=∂H∂pi,p˙i=−∂H∂qi\dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i}q˙i=∂pi∂H,p˙i=−∂qi∂H
- More powerful for analytical mechanics and quantum mechanics.
Contrast:
- Lagrangian depends on positions and velocities; Hamiltonian uses positions and momenta.
- Lagrangian is better suited to derive equations of motion; Hamiltonian is more symmetric and useful in phase space analysis.
Both are reformulations of Newtonian mechanics and lead to the same physical predictions.
