Sin 12 degree sin 18 degree sin 54 degree

Sin 12 degree sin 18 degree sin 54 degree

The Correct Answer and Explanation is:

To evaluate the expression:sin⁡(12∘)⋅sin⁡(18∘)⋅sin⁡(54∘)\sin(12^\circ) \cdot \sin(18^\circ) \cdot \sin(54^\circ)sin(12∘)⋅sin(18∘)⋅sin(54∘)

we can make use of known trigonometric identities and exact values for special angles.

Step-by-step calculation:

Start by using known sine values for 18° and 54°:

  • sin⁡(18∘)=5−14\sin(18^\circ) = \dfrac{\sqrt{5} – 1}{4}sin(18∘)=45​−1​
  • sin⁡(54∘)=5+14\sin(54^\circ) = \dfrac{\sqrt{5} + 1}{4}sin(54∘)=45​+1​

Multiplying these two:sin⁡(18∘)⋅sin⁡(54∘)=(5−14)⋅(5+14)\sin(18^\circ) \cdot \sin(54^\circ) = \left( \dfrac{\sqrt{5} – 1}{4} \right) \cdot \left( \dfrac{\sqrt{5} + 1}{4} \right)sin(18∘)⋅sin(54∘)=(45​−1​)⋅(45​+1​)

Use the identity (a−b)(a+b)=a2−b2(a – b)(a + b) = a^2 – b^2(a−b)(a+b)=a2−b2:=5−116=416=14= \dfrac{5 – 1}{16} = \dfrac{4}{16} = \dfrac{1}{4}=165−1​=164​=41​

Now, multiply that by sin⁡(12∘)\sin(12^\circ)sin(12∘):sin⁡(12∘)⋅14\sin(12^\circ) \cdot \dfrac{1}{4}sin(12∘)⋅41​

We now need the value of sin⁡(12∘)\sin(12^\circ)sin(12∘). This does not have a simple radical form, but using a calculator or table:sin⁡(12∘)≈0.2079\sin(12^\circ) \approx 0.2079sin(12∘)≈0.2079

Therefore:sin⁡(12∘)⋅sin⁡(18∘)⋅sin⁡(54∘)≈0.2079⋅14=0.2079⋅0.25=0.051975\sin(12^\circ) \cdot \sin(18^\circ) \cdot \sin(54^\circ) \approx 0.2079 \cdot \dfrac{1}{4} = 0.2079 \cdot 0.25 = 0.051975sin(12∘)⋅sin(18∘)⋅sin(54∘)≈0.2079⋅41​=0.2079⋅0.25=0.051975

Rounded to four decimal places:0.0520\boxed{0.0520}0.0520​


Explanation

The given expression involves multiplying three sine values: sin⁡(12∘)\sin(12^\circ)sin(12∘), sin⁡(18∘)\sin(18^\circ)sin(18∘), and sin⁡(54∘)\sin(54^\circ)sin(54∘). These are not standard angles typically found on the unit circle, but some of them, such as 18° and 54°, are linked to the geometry of regular pentagons and the golden ratio. Their exact values can be expressed using square roots.

First, we use known exact values:

  • sin⁡(18∘)\sin(18^\circ)sin(18∘) equals (5−1)/4(\sqrt{5} – 1)/4(5​−1)/4
  • sin⁡(54∘)\sin(54^\circ)sin(54∘) equals (5+1)/4(\sqrt{5} + 1)/4(5​+1)/4

When multiplied, these two expressions form a difference of squares:(5−14)(5+14)=5−116=14\left(\dfrac{\sqrt{5} – 1}{4}\right)\left(\dfrac{\sqrt{5} + 1}{4}\right) = \dfrac{5 – 1}{16} = \dfrac{1}{4}(45​−1​)(45​+1​)=165−1​=41​

This reduces our problem to finding the product of sin⁡(12∘)\sin(12^\circ)sin(12∘) and 1/41/41/4. While sin⁡(12∘)\sin(12^\circ)sin(12∘) does not have a simple radical form, it can be approximated numerically using a calculator. The value is about 0.2079. Multiplying by 1/4 gives approximately 0.0520.

This method demonstrates the power of using identities and known exact values to simplify seemingly complex trigonometric products. The final result is a simple decimal, even though the original expression involved non-standard angles.

Scroll to Top