Find the exact value of sin(5pi/8) by using the formulas (sum and difference, half angle, double angle

Find the exact value of sin(5pi/8) by using the formulas (sum and difference, half angle, double angle

The Correct Answer and Explanation is:

To find the exact value of sin⁡(5π8)\sin\left(\frac{5\pi}{8}\right)sin(85π​), we will use a combination of sum and difference identities and half-angle formulas.

Step 1: Express 5π8\frac{5\pi}{8}85π​ as a sum of known angles

We can write 5π8\frac{5\pi}{8}85π​ as the sum of two known angles: 5π8=π2+π8\frac{5\pi}{8} = \frac{\pi}{2} + \frac{\pi}{8}85π​=2π​+8π​

Step 2: Apply the sum formula for sine

We use the sum formula for sine: sin⁡(A+B)=sin⁡Acos⁡B+cos⁡Asin⁡B\sin(A + B) = \sin A \cos B + \cos A \sin Bsin(A+B)=sinAcosB+cosAsinB

In this case, A=π2A = \frac{\pi}{2}A=2π​ and B=π8B = \frac{\pi}{8}B=8π​. Substituting these values into the formula: sin⁡(π2+π8)=sin⁡(π2)cos⁡(π8)+cos⁡(π2)sin⁡(π8)\sin\left(\frac{\pi}{2} + \frac{\pi}{8}\right) = \sin\left(\frac{\pi}{2}\right)\cos\left(\frac{\pi}{8}\right) + \cos\left(\frac{\pi}{2}\right)\sin\left(\frac{\pi}{8}\right)sin(2π​+8π​)=sin(2π​)cos(8π​)+cos(2π​)sin(8π​)

Step 3: Simplify using known values for sin⁡(π2)\sin\left(\frac{\pi}{2}\right)sin(2π​) and cos⁡(π2)\cos\left(\frac{\pi}{2}\right)cos(2π​)

We know that: sin⁡(π2)=1andcos⁡(π2)=0\sin\left(\frac{\pi}{2}\right) = 1 \quad \text{and} \quad \cos\left(\frac{\pi}{2}\right) = 0sin(2π​)=1andcos(2π​)=0

So, the expression simplifies to: sin⁡(π2+π8)=1⋅cos⁡(π8)+0⋅sin⁡(π8)\sin\left(\frac{\pi}{2} + \frac{\pi}{8}\right) = 1 \cdot \cos\left(\frac{\pi}{8}\right) + 0 \cdot \sin\left(\frac{\pi}{8}\right)sin(2π​+8π​)=1⋅cos(8π​)+0⋅sin(8π​)

Thus, we have: sin⁡(5π8)=cos⁡(π8)\sin\left(\frac{5\pi}{8}\right) = \cos\left(\frac{\pi}{8}\right)sin(85π​)=cos(8π​)

Step 4: Use the half-angle formula to find cos⁡(π8)\cos\left(\frac{\pi}{8}\right)cos(8π​)

Now, we need to compute cos⁡(π8)\cos\left(\frac{\pi}{8}\right)cos(8π​). To do this, we use the half-angle formula for cosine: cos⁡(θ2)=±1+cos⁡(θ)2\cos\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 + \cos(\theta)}{2}}cos(2θ​)=±21+cos(θ)​​

Let θ=π4\theta = \frac{\pi}{4}θ=4π​, so that π8=π4×12\frac{\pi}{8} = \frac{\pi}{4} \times \frac{1}{2}8π​=4π​×21​. Then: cos⁡(π8)=1+cos⁡(π4)2\cos\left(\frac{\pi}{8}\right) = \sqrt{\frac{1 + \cos\left(\frac{\pi}{4}\right)}{2}}cos(8π​)=21+cos(4π​)​​

We know that: cos⁡(π4)=22\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}cos(4π​)=22​​

Substitute this into the half-angle formula: cos⁡(π8)=1+222=22+222=2+24=2+22\cos\left(\frac{\pi}{8}\right) = \sqrt{\frac{1 + \frac{\sqrt{2}}{2}}{2}} = \sqrt{\frac{\frac{2}{2} + \frac{\sqrt{2}}{2}}{2}} = \sqrt{\frac{2 + \sqrt{2}}{4}} = \frac{\sqrt{2 + \sqrt{2}}}{2}cos(8π​)=21+22​​​​=222​+22​​​​=42+2​​​=22+2​​​

Final Answer:

Thus, the exact value of sin⁡(5π8)\sin\left(\frac{5\pi}{8}\right)sin(85π​) is: sin⁡(5π8)=2+22\sin\left(\frac{5\pi}{8}\right) = \frac{\sqrt{2 + \sqrt{2}}}{2}sin(85π​)=22+2​​​

Scroll to Top