Evaluate the polynomial y= x^3- 5x^2+ 6x + 0.55 at x=1.37 Use 3-digit arithmetic with rounding. Evaluate the percent relative error. (b) Repeat (a) but express y asy= ((x- 5)x +6)x + 0.55
The Correct Answer and Explanation is:
Let’s evaluate the polynomial y=x3−5×2+6x+0.55y = x^3 – 5x^2 + 6x + 0.55y=x3−5×2+6x+0.55 at x=1.37x = 1.37x=1.37 using 3-digit arithmetic and rounding. Then we’ll calculate the percent relative error. For part (b), we’ll repeat the process using the factored form y=((x−5)x+6)x+0.55y = ((x – 5)x + 6)x + 0.55y=((x−5)x+6)x+0.55.
Part (a) – Polynomial Evaluation
We are given the polynomial:y=x3−5×2+6x+0.55y = x^3 – 5x^2 + 6x + 0.55y=x3−5×2+6x+0.55
Substitute x=1.37x = 1.37x=1.37 into the polynomial:y=(1.37)3−5(1.37)2+6(1.37)+0.55y = (1.37)^3 – 5(1.37)^2 + 6(1.37) + 0.55y=(1.37)3−5(1.37)2+6(1.37)+0.55
- (1.37)3=2.599073(1.37)^3 = 2.599073(1.37)3=2.599073
- (1.37)2=1.8769(1.37)^2 = 1.8769(1.37)2=1.8769, so 5(1.37)2=9.38455(1.37)^2 = 9.38455(1.37)2=9.3845
- 6(1.37)=8.226(1.37) = 8.226(1.37)=8.22
Now substitute these into the polynomial:y=2.599073−9.3845+8.22+0.55y = 2.599073 – 9.3845 + 8.22 + 0.55y=2.599073−9.3845+8.22+0.55y=2.599073+8.22−9.3845+0.55y = 2.599073 + 8.22 – 9.3845 + 0.55y=2.599073+8.22−9.3845+0.55y=10.819073−9.3845+0.55=2.984573y = 10.819073 – 9.3845 + 0.55 = 2.984573y=10.819073−9.3845+0.55=2.984573
Rounding to three significant digits:y≈2.98y \approx 2.98y≈2.98
Percent Relative Error
The exact value is calculated using a more precise value for the power terms:
- (1.37)3=2.599073(1.37)^3 = 2.599073(1.37)3=2.599073
- 5(1.37)2=9.38455(1.37)^2 = 9.38455(1.37)2=9.3845
- 6(1.37)=8.226(1.37) = 8.226(1.37)=8.22
For the exact value, the polynomial sum is 2.599073−9.3845+8.22+0.55≈2.9845732.599073 – 9.3845 + 8.22 + 0.55 \approx 2.9845732.599073−9.3845+8.22+0.55≈2.984573. The value rounded to three digits is 2.98.
The percent relative error is given by the formula:Percent Relative Error=∣Exact Value−Approximate ValueExact Value∣×100\text{Percent Relative Error} = \left| \frac{\text{Exact Value} – \text{Approximate Value}}{\text{Exact Value}} \right| \times 100Percent Relative Error=Exact ValueExact Value−Approximate Value×100Percent Relative Error=∣2.984573−2.982.984573∣×100\text{Percent Relative Error} = \left| \frac{2.984573 – 2.98}{2.984573} \right| \times 100Percent Relative Error=2.9845732.984573−2.98×100Percent Relative Error≈∣0.0045732.984573∣×100≈0.153%\text{Percent Relative Error} \approx \left| \frac{0.004573}{2.984573} \right| \times 100 \approx 0.153\%Percent Relative Error≈2.9845730.004573×100≈0.153%
Part (b) – Using the Factored Form
Now, we express the polynomial in factored form:y=((x−5)x+6)x+0.55y = ((x – 5)x + 6)x + 0.55y=((x−5)x+6)x+0.55
Substitute x=1.37x = 1.37x=1.37 into this form:y=((1.37−5)×1.37+6)×1.37+0.55y = ((1.37 – 5) \times 1.37 + 6) \times 1.37 + 0.55y=((1.37−5)×1.37+6)×1.37+0.55
First, calculate the inner expressions:1.37−5=−3.631.37 – 5 = -3.631.37−5=−3.63(−3.63)×1.37=−4.9781(-3.63) \times 1.37 = -4.9781(−3.63)×1.37=−4.9781−4.9781+6=1.0219-4.9781 + 6 = 1.0219−4.9781+6=1.02191.0219×1.37=1.3988031.0219 \times 1.37 = 1.3988031.0219×1.37=1.3988031.398803+0.55=1.9488031.398803 + 0.55 = 1.9488031.398803+0.55=1.948803
Rounding to three significant digits:y≈1.95y \approx 1.95y≈1.95
Percent Relative Error for Factored Form
Now calculate the percent relative error:Percent Relative Error=∣Exact Value−Approximate ValueExact Value∣×100\text{Percent Relative Error} = \left| \frac{\text{Exact Value} – \text{Approximate Value}}{\text{Exact Value}} \right| \times 100Percent Relative Error=Exact ValueExact Value−Approximate Value×100
The exact value is 2.984573, and the approximate value is 1.95:Percent Relative Error=∣2.984573−1.952.984573∣×100\text{Percent Relative Error} = \left| \frac{2.984573 – 1.95}{2.984573} \right| \times 100Percent Relative Error=2.9845732.984573−1.95×100Percent Relative Error=∣1.0345732.984573∣×100≈34.7%\text{Percent Relative Error} = \left| \frac{1.034573}{2.984573} \right| \times 100 \approx 34.7\%Percent Relative Error=2.9845731.034573×100≈34.7%
Conclusion
- In part (a), the evaluation of the polynomial gives y≈2.98y \approx 2.98y≈2.98, with a percent relative error of about 0.153%0.153\%0.153%.
- In part (b), using the factored form gives y≈1.95y \approx 1.95y≈1.95, with a percent relative error of about 34.7%34.7\%34.7%.
This significant difference in errors between the two forms highlights how the polynomial’s structure can affect the accuracy of numerical evaluations. The original polynomial gives a much more accurate result than the factored form in this case.
