The value of Ka for nitrous acid (HNO2) at 25°C is 4.5×10^(-4). a. Write the chemical equation for the equilibrium that corresponds to Ka: 1. H+(aq) + NO2-(aq) ⇌ HNO2(aq) 2. HNO2(aq) ⇌ H+(aq) + NO2-(aq) 3. HNO2(aq) ⇌ H-(aq) + NO2+(aq) 4. HNO2(aq) + H+(aq) ⇌ H2NO2+(aq) 5. HNO2(aq) + H-(aq) ⇌ H2NO2+(aq) b. By using the value of Ka, calculate ΔG° for the dissociation of nitrous acid in aqueous solution. c. What is the value of ΔG at equilibrium? d. What is the value of ΔG when [H+] = 5.9×10^(-2) M, [NO2-] = 6.7×10^(-4) M, and [HNO2] = 0.21 M?
The Correct Answer and Explanation is:
a. Chemical Equation for Ka
The equilibrium constant KaK_aKa for nitrous acid (HNO₂) represents the dissociation of HNO₂ into its ions. The correct equilibrium equation for the dissociation of nitrous acid is:
HNO2(aq)⇌H+(aq)+NO2−(aq)\text{HNO}_2(aq) \rightleftharpoons \text{H}^+(aq) + \text{NO}_2^-(aq)HNO2(aq)⇌H+(aq)+NO2−(aq)
So, the correct option is:
2. HNO₂(aq) ⇌ H⁺(aq) + NO₂⁻(aq)
b. Calculation of ΔG° for the Dissociation of Nitrous Acid
To calculate the standard Gibbs free energy change (ΔG°) for the dissociation of nitrous acid, we can use the following relationship between KaK_aKa and ΔG∘\Delta G^\circΔG∘:ΔG∘=−RTlnKa\Delta G^\circ = -RT \ln K_aΔG∘=−RTlnKa
Where:
- RRR is the gas constant = 8.314 J/(mol·K)
- TTT is the temperature in Kelvin (given as 25°C, so T=298 KT = 298 \, \text{K}T=298K)
- KaK_aKa is the equilibrium constant for the dissociation of nitrous acid, given as 4.5×10−44.5 \times 10^{-4}4.5×10−4
Substituting the values:ΔG∘=−(8.314)×(298)×ln(4.5×10−4)\Delta G^\circ = – (8.314) \times (298) \times \ln(4.5 \times 10^{-4})ΔG∘=−(8.314)×(298)×ln(4.5×10−4)
First, calculate the natural logarithm:ln(4.5×10−4)=ln(4.5)+ln(10−4)=1.5041−9.2103=−7.7062\ln(4.5 \times 10^{-4}) = \ln(4.5) + \ln(10^{-4}) = 1.5041 – 9.2103 = -7.7062ln(4.5×10−4)=ln(4.5)+ln(10−4)=1.5041−9.2103=−7.7062
Now calculate ΔG∘\Delta G^\circΔG∘:ΔG∘=−(8.314)×(298)×(−7.7062)\Delta G^\circ = – (8.314) \times (298) \times (-7.7062)ΔG∘=−(8.314)×(298)×(−7.7062)ΔG∘=19104.5 J/mol≈19.1 kJ/mol\Delta G^\circ = 19104.5 \, \text{J/mol} \approx 19.1 \, \text{kJ/mol}ΔG∘=19104.5J/mol≈19.1kJ/mol
So, ΔG∘≈19.1 kJ/mol\Delta G^\circ \approx 19.1 \, \text{kJ/mol}ΔG∘≈19.1kJ/mol.
c. Value of ΔG at Equilibrium
At equilibrium, the Gibbs free energy change ΔG\Delta GΔG is zero because the system has reached a state of balance between the forward and reverse reactions. Therefore:ΔG=0 kJ/mol\Delta G = 0 \, \text{kJ/mol}ΔG=0kJ/mol
d. Calculation of ΔG when [H⁺] = 5.9 × 10⁻² M, [NO₂⁻] = 6.7 × 10⁻⁴ M, and [HNO₂] = 0.21 M
To calculate the Gibbs free energy change at non-standard conditions, we use the equation:ΔG=ΔG∘+RTlnQ\Delta G = \Delta G^\circ + RT \ln QΔG=ΔG∘+RTlnQ
Where:
- ΔG∘\Delta G^\circΔG∘ is the standard Gibbs free energy change (19.1 kJ/mol)
- RRR is the gas constant (8.314 J/mol·K)
- TTT is the temperature in Kelvin (298 K)
- QQQ is the reaction quotient, calculated as:
Q=[H+][NO2−][HNO2]Q = \frac{[\text{H}^+][\text{NO}_2^-]}{[\text{HNO}_2]}Q=[HNO2][H+][NO2−]
Substituting the given concentrations:Q=(5.9×10−2)(6.7×10−4)0.21=3.953×10−50.21=1.88×10−4Q = \frac{(5.9 \times 10^{-2})(6.7 \times 10^{-4})}{0.21} = \frac{3.953 \times 10^{-5}}{0.21} = 1.88 \times 10^{-4}Q=0.21(5.9×10−2)(6.7×10−4)=0.213.953×10−5=1.88×10−4
Now calculate ΔG\Delta GΔG:ΔG=19104.5+(8.314)(298)ln(1.88×10−4)\Delta G = 19104.5 + (8.314)(298) \ln(1.88 \times 10^{-4})ΔG=19104.5+(8.314)(298)ln(1.88×10−4)
First, calculate the natural logarithm:ln(1.88×10−4)=ln(1.88)+ln(10−4)=0.6290−9.6439=−9.0149\ln(1.88 \times 10^{-4}) = \ln(1.88) + \ln(10^{-4}) = 0.6290 – 9.6439 = -9.0149ln(1.88×10−4)=ln(1.88)+ln(10−4)=0.6290−9.6439=−9.0149
Now calculate ΔG\Delta GΔG:ΔG=19104.5+(8.314)(298)(−9.0149)=19104.5−22229.7=−3125.2 J/mol\Delta G = 19104.5 + (8.314)(298)(-9.0149) = 19104.5 – 22229.7 = -3125.2 \, \text{J/mol}ΔG=19104.5+(8.314)(298)(−9.0149)=19104.5−22229.7=−3125.2J/mol
So, ΔG≈−3.13 kJ/mol\Delta G \approx -3.13 \, \text{kJ/mol}ΔG≈−3.13kJ/mol.
Final Answers:
- a. The correct chemical equation is HNO₂(aq) ⇌ H⁺(aq) + NO₂⁻(aq).
- b. The standard Gibbs free energy change ΔG∘\Delta G^\circΔG∘ is approximately 19.1 kJ/mol.
- c. The Gibbs free energy at equilibrium is 0 kJ/mol.
- d. The Gibbs free energy at the given concentrations is approximately -3.13 kJ/mol.
