Compute the misclassification rate accuracy rate, sensitivity, precision, and specificity for the following confusion matrix

Compute the misclassification rate accuracy rate, sensitivity, precision, and specificity for the following confusion matrix (Round your final answers to 2 decimal places:) Actual Class Class Class Predicted Class 142 Predicted Class 101 240 Misclassification rate Accuracy rate Sensitivity Precision Specificity

The Correct Answer and Explanation is:

To compute the misclassification rate, accuracy rate, sensitivity, precision, and specificity, let’s first define the confusion matrix for a binary classification problem:Confusion Matrix:\text{Confusion Matrix:}Confusion Matrix:Actual \PredictedClass 1Class 2Class 1142101Class 22400\begin{array}{|c|c|c|} \hline \text{Actual \textbackslash Predicted} & \text{Class 1} & \text{Class 2} \\ \hline \text{Class 1} & 142 & 101 \\ \text{Class 2} & 240 & 0 \\ \hline \end{array}Actual \PredictedClass 1Class 2​Class 1142240​Class 21010​​

From the matrix, we can extract the following values:

  • True Positives (TP): 142 (Class 1 predicted as Class 1)
  • False Positives (FP): 101 (Class 2 predicted as Class 1)
  • True Negatives (TN): 0 (Class 2 predicted as Class 2)
  • False Negatives (FN): 240 (Class 1 predicted as Class 2)

Now, we can compute the following metrics:

1. Misclassification Rate:

This is the fraction of incorrectly predicted instances (either FP or FN) to the total number of instances.Misclassification Rate=FP+FNTP+TN+FP+FN\text{Misclassification Rate} = \frac{FP + FN}{TP + TN + FP + FN}Misclassification Rate=TP+TN+FP+FNFP+FN​

Substituting the values:Misclassification Rate=101+240142+0+101+240=341483≈0.71\text{Misclassification Rate} = \frac{101 + 240}{142 + 0 + 101 + 240} = \frac{341}{483} \approx 0.71Misclassification Rate=142+0+101+240101+240​=483341​≈0.71

So, the misclassification rate is 0.71 or 71%.


2. Accuracy Rate:

Accuracy is the fraction of correctly predicted instances (either TP or TN) to the total number of instances.Accuracy Rate=TP+TNTP+TN+FP+FN\text{Accuracy Rate} = \frac{TP + TN}{TP + TN + FP + FN}Accuracy Rate=TP+TN+FP+FNTP+TN​

Substituting the values:Accuracy Rate=142+0142+0+101+240=142483≈0.29\text{Accuracy Rate} = \frac{142 + 0}{142 + 0 + 101 + 240} = \frac{142}{483} \approx 0.29Accuracy Rate=142+0+101+240142+0​=483142​≈0.29

So, the accuracy rate is 0.29 or 29%.


3. Sensitivity (Recall):

Sensitivity is the fraction of actual positive cases (Class 1) that are correctly identified by the classifier. This is also called the True Positive Rate.Sensitivity=TPTP+FN\text{Sensitivity} = \frac{TP}{TP + FN}Sensitivity=TP+FNTP​

Substituting the values:Sensitivity=142142+240=142382≈0.37\text{Sensitivity} = \frac{142}{142 + 240} = \frac{142}{382} \approx 0.37Sensitivity=142+240142​=382142​≈0.37

So, the sensitivity is 0.37 or 37%.


4. Precision:

Precision is the fraction of predicted positive cases (Class 1) that are actually positive (Class 1). This is also called the Positive Predictive Value.Precision=TPTP+FP\text{Precision} = \frac{TP}{TP + FP}Precision=TP+FPTP​

Substituting the values:Precision=142142+101=142243≈0.58\text{Precision} = \frac{142}{142 + 101} = \frac{142}{243} \approx 0.58Precision=142+101142​=243142​≈0.58

So, the precision is 0.58 or 58%.


5. Specificity:

Specificity is the fraction of actual negative cases (Class 2) that are correctly identified by the classifier. This is also called the True Negative Rate.Specificity=TNTN+FP\text{Specificity} = \frac{TN}{TN + FP}Specificity=TN+FPTN​

Substituting the values:Specificity=00+101=0101=0\text{Specificity} = \frac{0}{0 + 101} = \frac{0}{101} = 0Specificity=0+1010​=1010​=0

So, the specificity is 0 or 0%.


Final Results:

  • Misclassification Rate: 71%
  • Accuracy Rate: 29%
  • Sensitivity: 37%
  • Precision: 58%
  • Specificity: 0%

These results suggest that the model is not performing well, as it has a high misclassification rate and low accuracy, sensitivity, and specificity.

Scroll to Top