Convert

Convert. 1. \frac{113}{12} = 2. \frac{19}{2} = 3. \frac{36}{10} = 4. \frac{75}{12} = 5. \frac{50}{8} = 6. \frac{52}{10} = 7. \frac{13}{3} = 8. \frac{39}{4} = 9. \frac{68}{10} = 10. \frac{27}{5} = 11. \frac{53}{8} = 12. \frac{72}{10} = 13. \frac{11}{2} = 14. \frac{45}{8} = 15. \frac{42}{5} =

The Correct Answer and Explanation is:

Let’s convert these fractions to their decimal equivalents. To do this, we divide the numerator by the denominator.

  1. 11312\frac{113}{12}12113​ 113÷12=9.4167113 \div 12 = 9.4167113÷12=9.4167 This is approximately 9.4167.
  2. 192\frac{19}{2}219​ 19÷2=9.519 \div 2 = 9.519÷2=9.5 This is exactly 9.5.
  3. 3610\frac{36}{10}1036​ 36÷10=3.636 \div 10 = 3.636÷10=3.6 This is exactly 3.6.
  4. 7512\frac{75}{12}1275​ 75÷12=6.2575 \div 12 = 6.2575÷12=6.25 This is exactly 6.25.
  5. 508\frac{50}{8}850​ 50÷8=6.2550 \div 8 = 6.2550÷8=6.25 This is exactly 6.25.
  6. 5210\frac{52}{10}1052​ 52÷10=5.252 \div 10 = 5.252÷10=5.2 This is exactly 5.2.
  7. 133\frac{13}{3}313​ 13÷3=4.333313 \div 3 = 4.333313÷3=4.3333 This is approximately 4.3333.
  8. 394\frac{39}{4}439​ 39÷4=9.7539 \div 4 = 9.7539÷4=9.75 This is exactly 9.75.
  9. 6810\frac{68}{10}1068​ 68÷10=6.868 \div 10 = 6.868÷10=6.8 This is exactly 6.8.
  10. 275\frac{27}{5}527​ 27÷5=5.427 \div 5 = 5.427÷5=5.4 This is exactly 5.4.
  11. 538\frac{53}{8}853​ 53÷8=6.62553 \div 8 = 6.62553÷8=6.625 This is exactly 6.625.
  12. 7210\frac{72}{10}1072​ 72÷10=7.272 \div 10 = 7.272÷10=7.2 This is exactly 7.2.
  13. 112\frac{11}{2}211​ 11÷2=5.511 \div 2 = 5.511÷2=5.5 This is exactly 5.5.
  14. 458\frac{45}{8}845​ 45÷8=5.62545 \div 8 = 5.62545÷8=5.625 This is exactly 5.625.
  15. 425\frac{42}{5}542​ 42÷5=8.442 \div 5 = 8.442÷5=8.4 This is exactly 8.4.

Explanation

To convert a fraction to a decimal, the process is simply division. You divide the numerator (the top number of the fraction) by the denominator (the bottom number of the fraction). If the fraction divides evenly, you’ll get an integer. If not, you will get a decimal value, which may be a terminating decimal (as in the examples above) or a repeating decimal (for example, 1/3 = 0.3333…).

In these cases, we used long division to find the decimal equivalents of each fraction, rounding where necessary to match the typical precision for decimals (usually 4 decimal places or fewer).

Scroll to Top