Determine the fraction of Vmax that would be obtained at the following substrate concentrations.

Determine the fraction of Vmax that would be obtained at the following substrate concentrations. SHOW ALL WORK: a.) [S] = 0.5Km b.) [S] = 2Km c.) [S] = 10Km

The Correct Answer and Explanation is:

To determine the fraction of Vmax at different substrate concentrations, we use the Michaelis-Menten equation. The Michaelis-Menten equation relates the rate of reaction (v) to the substrate concentration [S] and the maximum velocity (Vmax) of the enzyme: v=Vmax[S]Km+[S]v = \frac{V_{\text{max}} [S]}{K_m + [S]}v=Km​+[S]Vmax​[S]​

Where:

  • vvv is the reaction velocity at substrate concentration [S][S][S],
  • VmaxV_{\text{max}}Vmax​ is the maximum reaction velocity,
  • KmK_mKm​ is the Michaelis constant (the substrate concentration at which the reaction rate is half of VmaxV_{\text{max}}Vmax​).

The fraction of VmaxV_{\text{max}}Vmax​ is found by calculating: vVmax=[S]Km+[S]\frac{v}{V_{\text{max}}} = \frac{[S]}{K_m + [S]}Vmax​v​=Km​+[S][S]​

Now, let’s calculate this fraction for the given substrate concentrations:

a.) [S]=0.5Km[S] = 0.5 K_m[S]=0.5Km​

Substitute [S]=0.5Km[S] = 0.5 K_m[S]=0.5Km​ into the formula: vVmax=0.5KmKm+0.5Km=0.5Km1.5Km=13\frac{v}{V_{\text{max}}} = \frac{0.5 K_m}{K_m + 0.5 K_m} = \frac{0.5 K_m}{1.5 K_m} = \frac{1}{3}Vmax​v​=Km​+0.5Km​0.5Km​​=1.5Km​0.5Km​​=31​

Thus, the fraction of VmaxV_{\text{max}}Vmax​ at [S]=0.5Km[S] = 0.5 K_m[S]=0.5Km​ is 1/3 or approximately 33.33%.

b.) [S]=2Km[S] = 2 K_m[S]=2Km​

Substitute [S]=2Km[S] = 2 K_m[S]=2Km​ into the formula: vVmax=2KmKm+2Km=2Km3Km=23\frac{v}{V_{\text{max}}} = \frac{2 K_m}{K_m + 2 K_m} = \frac{2 K_m}{3 K_m} = \frac{2}{3}Vmax​v​=Km​+2Km​2Km​​=3Km​2Km​​=32​

Thus, the fraction of VmaxV_{\text{max}}Vmax​ at [S]=2Km[S] = 2 K_m[S]=2Km​ is 2/3 or approximately 66.67%.

c.) [S]=10Km[S] = 10 K_m[S]=10Km​

Substitute [S]=10Km[S] = 10 K_m[S]=10Km​ into the formula: vVmax=10KmKm+10Km=10Km11Km=1011\frac{v}{V_{\text{max}}} = \frac{10 K_m}{K_m + 10 K_m} = \frac{10 K_m}{11 K_m} = \frac{10}{11}Vmax​v​=Km​+10Km​10Km​​=11Km​10Km​​=1110​

Thus, the fraction of VmaxV_{\text{max}}Vmax​ at [S]=10Km[S] = 10 K_m[S]=10Km​ is 10/11 or approximately 90.91%.

Summary:

  • At [S]=0.5Km[S] = 0.5 K_m[S]=0.5Km​, the fraction of VmaxV_{\text{max}}Vmax​ is 1/3 or 33.33%.
  • At [S]=2Km[S] = 2 K_m[S]=2Km​, the fraction of VmaxV_{\text{max}}Vmax​ is 2/3 or 66.67%.
  • At [S]=10Km[S] = 10 K_m[S]=10Km​, the fraction of VmaxV_{\text{max}}Vmax​ is 10/11 or 90.91%.

These calculations show that as the substrate concentration increases relative to the KmK_mKm​, the reaction velocity approaches VmaxV_{\text{max}}Vmax

Scroll to Top