What is the gravitational force between the Earth and Mars

What is the gravitational force between the Earth and Mars? Mass of Earth = 5.97 x 10^24 kg Mass of Mars = 6.39 x 10^23 kg Distance between Earth and Mars = 2.25 x 10^11 m Options: A) 5.02 x 10^15 N B) 1.13 x 10^27 N C) 7.52 x 10^25 N D) 2.54 x 10^38 N

The Correct Answer and Explanation is:

To calculate the gravitational force between the Earth and Mars, we use Newton’s Law of Universal Gravitation:F=G⋅m1⋅m2r2F = \frac{{G \cdot m_1 \cdot m_2}}{{r^2}}F=r2G⋅m1​⋅m2​​

Where:

  • FFF is the gravitational force,
  • GGG is the gravitational constant, G=6.67×10−11 N⋅m2/kg2G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2G=6.67×10−11N⋅m2/kg2,
  • m1m_1m1​ and m2m_2m2​ are the masses of Earth and Mars, respectively,
  • rrr is the distance between the centers of Earth and Mars.

Given:

  • Mass of Earth, m1=5.97×1024 kgm_1 = 5.97 \times 10^{24} \, \text{kg}m1​=5.97×1024kg,
  • Mass of Mars, m2=6.39×1023 kgm_2 = 6.39 \times 10^{23} \, \text{kg}m2​=6.39×1023kg,
  • Distance between Earth and Mars, r=2.25×1011 mr = 2.25 \times 10^{11} \, \text{m}r=2.25×1011m.

Now, substituting the values into the formula:F=(6.67×10−11)⋅(5.97×1024)⋅(6.39×1023)(2.25×1011)2F = \frac{{(6.67 \times 10^{-11}) \cdot (5.97 \times 10^{24}) \cdot (6.39 \times 10^{23})}}{{(2.25 \times 10^{11})^2}}F=(2.25×1011)2(6.67×10−11)⋅(5.97×1024)⋅(6.39×1023)​

First, calculate the denominator:r2=(2.25×1011)2=5.0625×1022 m2r^2 = (2.25 \times 10^{11})^2 = 5.0625 \times 10^{22} \, \text{m}^2r2=(2.25×1011)2=5.0625×1022m2

Now, calculate the numerator:(6.67×10−11)⋅(5.97×1024)⋅(6.39×1023)=2.54×1037(6.67 \times 10^{-11}) \cdot (5.97 \times 10^{24}) \cdot (6.39 \times 10^{23}) = 2.54 \times 10^{37}(6.67×10−11)⋅(5.97×1024)⋅(6.39×1023)=2.54×1037

Finally, divide the numerator by the denominator:F=2.54×10375.0625×1022=5.02×1015 NF = \frac{{2.54 \times 10^{37}}}{{5.0625 \times 10^{22}}} = 5.02 \times 10^{15} \, \text{N}F=5.0625×10222.54×1037​=5.02×1015N

Therefore, the gravitational force between the Earth and Mars is 5.02 x 10^15 N, which corresponds to option A.

Scroll to Top