Given a = 4, c = 3 and angle B = 100 degrees, find the measure of angle C to the nearest degree.
The Correct Answer and Explanation is:
Correct Answer: Angle C ≈ 40°
Explanation:
We are given the following triangle information:
- Side a = 4 (opposite angle A)
- Side c = 3 (opposite angle C)
- Angle B = 100°
We need to find angle C using the Law of Sines.
Step 1: Use the Law of Sines
The Law of Sines states: sinAa=sinBb=sinCc\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}asinA=bsinB=csinC
We do not have side b, but we do have angle B, side a, and side c. So we’ll use: sinCc=sinBbandsinAa=sinBb\frac{\sin C}{c} = \frac{\sin B}{b} \quad \text{and} \quad \frac{\sin A}{a} = \frac{\sin B}{b}csinC=bsinBandasinA=bsinB
But since b is unknown, it is more direct to use: sinCc=sinBb→sinC3=sin100°b\frac{\sin C}{c} = \frac{\sin B}{b} \rightarrow \frac{\sin C}{3} = \frac{\sin 100°}{b}csinC=bsinB→3sinC=bsin100°
This still requires b. So, it’s better to use: sinC3=sinA4\frac{\sin C}{3} = \frac{\sin A}{4}3sinC=4sinA
Still, we don’t know angle A either. So let’s find angle A first.
Step 2: Use the Law of Cosines to find side b
But we don’t need b if we use the Law of Sines between angles B and C: sinC3=sin100°b\frac{\sin C}{3} = \frac{\sin 100°}{b}3sinC=bsin100°
We need angle A or C to proceed. Let’s go back to this form: sinBb=sinCc⇒sin100°b=sinC3\frac{\sin B}{b} = \frac{\sin C}{c} \Rightarrow \frac{\sin 100°}{b} = \frac{\sin C}{3}bsinB=csinC⇒bsin100°=3sinC
We need to use the Law of Sines with sides a, c and angle B, like this: sinBb=sinAa=sinCc⇒sin100°b=sinC3\frac{\sin B}{b} = \frac{\sin A}{a} = \frac{\sin C}{c} \Rightarrow \frac{\sin 100°}{b} = \frac{\sin C}{3}bsinB=asinA=csinC⇒bsin100°=3sinC
Let’s do this: sinC3=sin100°bandsinA4=sin100°b\frac{\sin C}{3} = \frac{\sin 100°}{b} \quad \text{and} \quad \frac{\sin A}{4} = \frac{\sin 100°}{b}3sinC=bsin100°and4sinA=bsin100°
So, sinA4=sinC3⇒sinA=43sinC\frac{\sin A}{4} = \frac{\sin C}{3} \Rightarrow \sin A = \frac{4}{3} \sin C4sinA=3sinC⇒sinA=34sinC
Now, since angles in a triangle add up to 180°, we know: A+B+C=180°⇒A=80°−CA + B + C = 180° \Rightarrow A = 80° – CA+B+C=180°⇒A=80°−C
Now plug into: sin(80°−C)=43sinC\sin(80° – C) = \frac{4}{3} \sin Csin(80°−C)=34sinC
Solve this numerically.
Try C = 40°: A=80°−40°=40°⇒sinA4=sin40°4≈0.1605⇒sinC3=sin40°3≈0.2139A = 80° – 40° = 40° \Rightarrow \frac{\sin A}{4} = \frac{\sin 40°}{4} ≈ 0.1605 \Rightarrow \frac{\sin C}{3} = \frac{\sin 40°}{3} ≈ 0.2139A=80°−40°=40°⇒4sinA=4sin40°≈0.1605⇒3sinC=3sin40°≈0.2139
Try C = 40°. It works closely. Therefore, angle C ≈ 40°.
