\frac{\cos 70^\circ}{\sin 20^\circ} + \cos 36^\circ \csc 54^\circ
The Correct Answer and Explanation is:
The expression we are looking to simplify is:cos70∘sin20∘+cos36∘csc54∘\frac{\cos 70^\circ}{\sin 20^\circ} + \cos 36^\circ \csc 54^\circsin20∘cos70∘+cos36∘csc54∘
Step-by-Step Simplification:
- First part: cos70∘sin20∘\frac{\cos 70^\circ}{\sin 20^\circ}sin20∘cos70∘ We know from trigonometric identities that: cos70∘=sin20∘\cos 70^\circ = \sin 20^\circcos70∘=sin20∘ Therefore, the first part of the expression simplifies to: sin20∘sin20∘=1\frac{\sin 20^\circ}{\sin 20^\circ} = 1sin20∘sin20∘=1
- Second part: cos36∘csc54∘\cos 36^\circ \csc 54^\circcos36∘csc54∘ We know that: cscθ=1sinθ\csc \theta = \frac{1}{\sin \theta}cscθ=sinθ1 Hence, csc54∘=1sin54∘\csc 54^\circ = \frac{1}{\sin 54^\circ}csc54∘=sin54∘1 Therefore, the second part becomes: cos36∘×1sin54∘\cos 36^\circ \times \frac{1}{\sin 54^\circ}cos36∘×sin54∘1 We also know that: sin54∘=cos36∘\sin 54^\circ = \cos 36^\circsin54∘=cos36∘ Thus, the second part simplifies to: cos36∘×1cos36∘=1\cos 36^\circ \times \frac{1}{\cos 36^\circ} = 1cos36∘×cos36∘1=1
Final Answer:
So, the entire expression simplifies as follows:1+1=21 + 1 = 21+1=2
Thus, the value of the given expression is 2\boxed{2}2.
Explanation:
We used known trigonometric identities to simplify the terms. First, we used the identity cos70∘=sin20∘\cos 70^\circ = \sin 20^\circcos70∘=sin20∘ to cancel out terms in the first fraction. In the second part, the identity sin54∘=cos36∘\sin 54^\circ = \cos 36^\circsin54∘=cos36∘ allowed us to simplify the expression for cos36∘csc54∘\cos 36^\circ \csc 54^\circcos36∘csc54∘, leading to a value of 1. Finally, the sum of the two parts results in 2.
