The value of sin 70 degrees + cos 40 Degrees by cos 70 degrees plus sin 40 Degrees
The Correct Answer and Explanation is:
To evaluate the expression: sin70∘+cos40∘bycos70∘+sin40∘\sin 70^\circ + \cos 40^\circ \quad \text{by} \quad \cos 70^\circ + \sin 40^\circsin70∘+cos40∘bycos70∘+sin40∘
First, recall that: cos(90∘−x)=sin(x)andsin(90∘−x)=cos(x)\cos(90^\circ – x) = \sin(x) \quad \text{and} \quad \sin(90^\circ – x) = \cos(x)cos(90∘−x)=sin(x)andsin(90∘−x)=cos(x)
Step 1: Express terms using co-function identities
We know that:
- cos40∘=sin(90∘−40∘)=sin50∘\cos 40^\circ = \sin (90^\circ – 40^\circ) = \sin 50^\circcos40∘=sin(90∘−40∘)=sin50∘
- sin40∘=cos(90∘−40∘)=cos50∘\sin 40^\circ = \cos (90^\circ – 40^\circ) = \cos 50^\circsin40∘=cos(90∘−40∘)=cos50∘
Now, we can rewrite the expression as: sin70∘+cos40∘becomessin70∘+sin50∘\sin 70^\circ + \cos 40^\circ \quad \text{becomes} \quad \sin 70^\circ + \sin 50^\circsin70∘+cos40∘becomessin70∘+sin50∘ cos70∘+sin40∘becomescos70∘+cos50∘\cos 70^\circ + \sin 40^\circ \quad \text{becomes} \quad \cos 70^\circ + \cos 50^\circcos70∘+sin40∘becomescos70∘+cos50∘
Step 2: Simplify using sum of angles formula
We can use the sine and cosine addition formulas for further simplification.
- The sum of sine terms:
sinA+sinB=2sin(A+B2)cos(A−B2)\sin A + \sin B = 2 \sin\left(\frac{A + B}{2}\right) \cos\left(\frac{A – B}{2}\right)sinA+sinB=2sin(2A+B)cos(2A−B)
- The sum of cosine terms:
cosA+cosB=2cos(A+B2)cos(A−B2)\cos A + \cos B = 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A – B}{2}\right)cosA+cosB=2cos(2A+B)cos(2A−B)
For sin70∘+sin50∘\sin 70^\circ + \sin 50^\circsin70∘+sin50∘, applying the sine addition formula: sin70∘+sin50∘=2sin(70∘+50∘2)cos(70∘−50∘2)\sin 70^\circ + \sin 50^\circ = 2 \sin\left(\frac{70^\circ + 50^\circ}{2}\right) \cos\left(\frac{70^\circ – 50^\circ}{2}\right)sin70∘+sin50∘=2sin(270∘+50∘)cos(270∘−50∘) =2sin60∘cos10∘= 2 \sin 60^\circ \cos 10^\circ=2sin60∘cos10∘
For cos70∘+cos50∘\cos 70^\circ + \cos 50^\circcos70∘+cos50∘, applying the cosine addition formula: cos70∘+cos50∘=2cos(70∘+50∘2)cos(70∘−50∘2)\cos 70^\circ + \cos 50^\circ = 2 \cos\left(\frac{70^\circ + 50^\circ}{2}\right) \cos\left(\frac{70^\circ – 50^\circ}{2}\right)cos70∘+cos50∘=2cos(270∘+50∘)cos(270∘−50∘) =2cos60∘cos10∘= 2 \cos 60^\circ \cos 10^\circ=2cos60∘cos10∘
Step 3: Final simplification
We know: sin60∘=32andcos60∘=12\sin 60^\circ = \frac{\sqrt{3}}{2} \quad \text{and} \quad \cos 60^\circ = \frac{1}{2}sin60∘=23andcos60∘=21
Thus, the expression becomes: 2sin60∘cos10∘=2×32×cos10∘=3cos10∘2 \sin 60^\circ \cos 10^\circ = 2 \times \frac{\sqrt{3}}{2} \times \cos 10^\circ = \sqrt{3} \cos 10^\circ2sin60∘cos10∘=2×23×cos10∘=3cos10∘ 2cos60∘cos10∘=2×12×cos10∘=cos10∘2 \cos 60^\circ \cos 10^\circ = 2 \times \frac{1}{2} \times \cos 10^\circ = \cos 10^\circ2cos60∘cos10∘=2×21×cos10∘=cos10∘
Step 4: Final result
So, the original expression simplifies to: 3cos10∘cos10∘=3\frac{\sqrt{3} \cos 10^\circ}{\cos 10^\circ} = \sqrt{3}cos10∘3cos10∘=3
Thus, the value of sin70∘+cos40∘\sin 70^\circ + \cos 40^\circsin70∘+cos40∘ by cos70∘+sin40∘\cos 70^\circ + \sin 40^\circcos70∘+sin40∘ is approximately: 3\boxed{\sqrt{3}}3
