Calculate the derivative of the function y=log2 x ln (2x) at x=1.
The Correct Answer and Explanation is:
To find the derivative of the function y=log2x⋅ln(2x)y = \log_2 x \cdot \ln(2x)y=log2x⋅ln(2x) at x=1x = 1x=1, we need to apply both the product rule and the chain rule.
Step 1: Apply the product rule
The product rule states that if we have two functions u(x)u(x)u(x) and v(x)v(x)v(x), then their derivative is given by:ddx[u(x)⋅v(x)]=u′(x)⋅v(x)+u(x)⋅v′(x)\frac{d}{dx} [u(x) \cdot v(x)] = u'(x) \cdot v(x) + u(x) \cdot v'(x)dxd[u(x)⋅v(x)]=u′(x)⋅v(x)+u(x)⋅v′(x)
In our case, let:
- u(x)=log2xu(x) = \log_2 xu(x)=log2x
- v(x)=ln(2x)v(x) = \ln(2x)v(x)=ln(2x)
We will differentiate each of these separately.
Step 2: Differentiate u(x)=log2xu(x) = \log_2 xu(x)=log2x
To differentiate u(x)=log2xu(x) = \log_2 xu(x)=log2x, we can use the change of base formula, which states:log2x=lnxln2\log_2 x = \frac{\ln x}{\ln 2}log2x=ln2lnx
Now, differentiate using the chain rule:ddxlog2x=1ln2⋅1x\frac{d}{dx} \log_2 x = \frac{1}{\ln 2} \cdot \frac{1}{x}dxdlog2x=ln21⋅x1
Step 3: Differentiate v(x)=ln(2x)v(x) = \ln(2x)v(x)=ln(2x)
For v(x)=ln(2x)v(x) = \ln(2x)v(x)=ln(2x), we apply the chain rule. First, differentiate the outer function, which is ln(u)\ln(u)ln(u), where u=2xu = 2xu=2x, and then multiply by the derivative of the inner function u=2xu = 2xu=2x:ddxln(2x)=12x⋅2=1x\frac{d}{dx} \ln(2x) = \frac{1}{2x} \cdot 2 = \frac{1}{x}dxdln(2x)=2×1⋅2=x1
Step 4: Apply the product rule
Now, using the product rule:y′(x)=1ln2⋅1x⋅ln(2x)+log2x⋅1xy'(x) = \frac{1}{\ln 2} \cdot \frac{1}{x} \cdot \ln(2x) + \log_2 x \cdot \frac{1}{x}y′(x)=ln21⋅x1⋅ln(2x)+log2x⋅x1
Step 5: Evaluate at x=1x = 1x=1
Substitute x=1x = 1x=1 into the derivative:
- log21=0\log_2 1 = 0log21=0 because log21=0\log_2 1 = 0log21=0
- ln(2⋅1)=ln(2)\ln(2 \cdot 1) = \ln(2)ln(2⋅1)=ln(2)
- 11=1\frac{1}{1} = 111=1
Thus, the derivative at x=1x = 1x=1 becomes:y′(1)=1ln2⋅ln2+0⋅1=1y'(1) = \frac{1}{\ln 2} \cdot \ln 2 + 0 \cdot 1 = 1y′(1)=ln21⋅ln2+0⋅1=1
Final Answer:
The derivative of y=log2xln(2x)y = \log_2 x \ln(2x)y=log2xln(2x) at x=1x = 1x=1 is 111.
