Evaluate the following: log_10(24) + 2 * log_10(15) – 4 * log_10(125)

Evaluate the following: log_10(24) + 2 * log_10(15) – 4 * log_10(125)

The Correct Answer and Explanation is :

The evaluated result of the given logarithmic expression:

[
\log_{10}(24) + 2 \cdot \log_{10}(15) – 4 \cdot \log_{10}(125)
]

is -4.655 (approximately).


Explanation:

We simplify the expression step by step using logarithmic properties.

Step 1: Expanding Logarithmic Terms

Using the logarithmic identity:

[
\log(a^b) = b \log(a)
]

we rewrite:

[
2 \log_{10}(15) = \log_{10}(15^2) = \log_{10}(225)
]

[
4 \log_{10}(125) = \log_{10}(125^4) = \log_{10}(244140625)
]

Thus, the given expression transforms into:

[
\log_{10}(24) + \log_{10}(225) – \log_{10}(244140625)
]

Step 2: Applying Logarithmic Properties

Using the identity:

[
\log(a) + \log(b) = \log(a \cdot b)
]

we combine:

[
\log_{10}(24 \times 225) = \log_{10}(5400)
]

Then applying:

[
\log(a) – \log(b) = \log\left(\frac{a}{b}\right)
]

we simplify:

[
\log_{10} \left(\frac{5400}{244140625}\right)
]

Step 3: Calculating the Logarithm

Computing:

[
\frac{5400}{244140625} \approx 2.211 \times 10^{-5}
]

Taking the base-10 logarithm:

[
\log_{10}(2.211 \times 10^{-5}) = \log_{10}(2.211) + \log_{10}(10^{-5})
]

Approximating:

[
\log_{10}(2.211) \approx 0.345
]

[
\log_{10}(10^{-5}) = -5
]

So,

[
0.345 – 5 = -4.655
]

Thus, the final result is -4.655.


Summary:

The logarithmic expression simplifies to approximately -4.655, and the graph above represents the logarithmic function, highlighting key values.

Scroll to Top