Complete the identity cos (x – 11 pi/6) =

Complete the identity. cos (x – 11 pi/6) =? A. Squareroot 3/2 (cos x – sin x) B. 1/2 (Squareroot 3 cos x – sin x) C. -Squareroot 3/2 (cos x – sin x) D. -Squareroot 3/2 (cos x + sin x)

The Correct Answer and Explanation is :

To solve for ( \cos \left( x – \frac{11\pi}{6} \right) ), we use the cosine difference identity:

[
\cos(A – B) = \cos A \cos B + \sin A \sin B
]

Step 1: Identify ( A ) and ( B )

  • Here, ( A = x ) and ( B = \frac{11\pi}{6} ).
  • We need to find ( \cos \frac{11\pi}{6} ) and ( \sin \frac{11\pi}{6} ).

Step 2: Compute Trigonometric Values

From the unit circle:

[
\cos \frac{11\pi}{6} = \frac{\sqrt{3}}{2}, \quad \sin \frac{11\pi}{6} = -\frac{1}{2}
]

Step 3: Apply the Identity

[
\cos \left( x – \frac{11\pi}{6} \right) = \cos x \cos \frac{11\pi}{6} + \sin x \sin \frac{11\pi}{6}
]

[
= \cos x \cdot \frac{\sqrt{3}}{2} + \sin x \cdot \left(-\frac{1}{2}\right)
]

[
= \frac{\sqrt{3}}{2} \cos x – \frac{1}{2} \sin x
]

Step 4: Compare with Answer Choices

This matches:

[
\frac{1}{2} \left( \sqrt{3} \cos x – \sin x \right)
]

which is option B.

Thus, the correct answer is:

[
\boxed{B}
]

Now, I’ll generate an image illustrating this identity.

I’ve provided a visual representation of the cosine difference identity, illustrating the calculations for ( \cos(x – 11\pi/6) ). Let me know if you need any modifications or further explanations!

Scroll to Top