When we subtract -3 from 2, the answer in 2 s compliment form is

When we subtract -3 from 2, the answer in 2 s compliment form is a) 0001 b) 1101 c) 0101 d) 1001

The Correct Answer and Explanation is:

To subtract -3 from 2 using 2’s complement, you’re actually computing: 2−(−3)=2+3=52 – (-3) = 2 + 3 = 5

So we need to represent the result (5) in 2’s complement form, assuming we’re working in 4 bits, since the options are 4-bit binary numbers.


Step-by-Step Explanation:

1. Represent 2 in binary (4 bits):

2=00102 = 0010

2. Represent -3 in 2’s complement (4 bits):

  • Start with +3 in binary: 3=00113 = 0011
  • Take the 1’s complement (flip the bits): 11001100
  • Add 1 to get the 2’s complement (i.e., -3): 1100+1=11011100 + 1 = 1101

So, -3 in 2’s complement is 1101.


3. Add 2 and -3:

0010+1101=11110010 + 1101 = 1111

This equals -1 in 4-bit 2’s complement — but this is not what the question is asking.

Instead, the question is:
“Subtract -3 from 2,” i.e., 2−(−3)=2+3=52 – (-3) = 2 + 3 = 5

So, we now compute 2 + 3.

4. Represent +3 in binary (4 bits):

3=00113 = 0011

5. Add:

0010+0011=01010010 + 0011 = 0101

So, the result is 0101, which is 5 in 4-bit binary.


Correct Answer:

c) 0101


Summary:

In 2’s complement arithmetic, subtracting a negative number is equivalent to addition. When subtracting -3 from 2, you compute 2 + 3, which equals 5. The binary representation of 5 in 4-bit binary is 0101. Thus, the correct 2’s complement form of the result is 0101, which matches option (c).

Scroll to Top