Which expression is equivalent to

Which expression is equivalent to

The Correct Answer and Explanation is:

Let’s evaluate the expression step-by-step.

We are given: (454⋅414412)12\left(\frac{4^{\frac{5}{4}} \cdot 4^{\frac{1}{4}}}{4^{\frac{1}{2}}}\right)^{\frac{1}{2}}(421​445​⋅441​​)21​

Step 1: Simplify the numerator using laws of exponents

When multiplying expressions with the same base, add the exponents: 454⋅414=454+14=464=4324^{\frac{5}{4}} \cdot 4^{\frac{1}{4}} = 4^{\frac{5}{4} + \frac{1}{4}} = 4^{\frac{6}{4}} = 4^{\frac{3}{2}}445​⋅441​=445​+41​=446​=423​

So the whole expression becomes: (432412)12\left(\frac{4^{\frac{3}{2}}}{4^{\frac{1}{2}}}\right)^{\frac{1}{2}}(421​423​​)21​

Step 2: Simplify the fraction

When dividing powers with the same base, subtract the exponents: 432412=432−12=41\frac{4^{\frac{3}{2}}}{4^{\frac{1}{2}}} = 4^{\frac{3}{2} – \frac{1}{2}} = 4^{1}421​423​​=423​−21​=41

Now the expression is: (41)12=412=4=2(4^1)^{\frac{1}{2}} = 4^{\frac{1}{2}} = \sqrt{4} = 2(41)21​=421​=4​=2

Final Answer:

2\boxed{2}2​


Explanation

This problem tests your understanding of the laws of exponents and how to simplify radical and exponential expressions. You’re given a complex expression involving exponents and a radical, and the goal is to simplify it step-by-step using exponent rules.

We begin with the expression inside the parentheses: 454⋅414412\frac{4^{\frac{5}{4}} \cdot 4^{\frac{1}{4}}}{4^{\frac{1}{2}}}421​445​⋅441​​

Using the rule for multiplying powers with the same base, we add the exponents: 454+14=464=4324^{\frac{5}{4} + \frac{1}{4}} = 4^{\frac{6}{4}} = 4^{\frac{3}{2}}445​+41​=446​=423​

Next, we divide by 4124^{\frac{1}{2}}421​. Again, applying the law for dividing powers: 432÷412=432−12=414^{\frac{3}{2}} \div 4^{\frac{1}{2}} = 4^{\frac{3}{2} – \frac{1}{2}} = 4^1423​÷421​=423​−21​=41

Now the entire expression becomes (41)12(4^1)^{\frac{1}{2}}(41)21​. When you raise a power to a power, you multiply the exponents: (41)12=412=4=2(4^1)^{\frac{1}{2}} = 4^{\frac{1}{2}} = \sqrt{4} = 2(41)21​=421​=4​=2

Thus, the simplified expression is equal to 2. This shows the power of understanding exponent rules to break down and simplify complex-looking expressions into basic numerical answers.

Correct answer:

Scroll to Top