Find the exact function value.

Find the exact function value.\

The problem is to find the exact value oftan⁡(5π6)\tan\left(\frac{5\pi}{6}\right)tan(65π​)


Correct Answer:

tan⁡(5π6)=−13\tan\left(\frac{5\pi}{6}\right) = -\frac{1}{\sqrt{3}}tan(65π​)=−3​1​


✍️ Explanation

To find the exact value of tan⁡(5π6)\tan\left(\frac{5\pi}{6}\right)tan(65π​), we begin by identifying which quadrant this angle lies in and using a reference angle.

Step 1: Understand the angle

5π6 radians=150∘\frac{5\pi}{6} \text{ radians} = 150^\circ65π​ radians=150∘

This angle lies in Quadrant II (between 90∘90^\circ90∘ and 180∘180^\circ180∘).

Step 2: Find the reference angle

To find the reference angle in Quadrant II, subtract the angle from π\piπ (or 180°):Reference angle=π−5π6=π6\text{Reference angle} = \pi – \frac{5\pi}{6} = \frac{\pi}{6}Reference angle=π−65π​=6π​

So, the reference angle is π6\frac{\pi}{6}6π​.

Step 3: Use known values for tan⁡(π6)\tan(\frac{\pi}{6})tan(6π​)

From the unit circle, we know:tan⁡(π6)=13\tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}tan(6π​)=3​1​

Step 4: Determine the sign in Quadrant II

In Quadrant II:

  • Sine is positive
  • Cosine is negative
  • Therefore, Tangent (which is sin⁡/cos⁡\sin/\cossin/cos) is negative

So:tan⁡(5π6)=−tan⁡(π6)=−13\tan\left(\frac{5\pi}{6}\right) = -\tan\left(\frac{\pi}{6}\right) = -\frac{1}{\sqrt{3}}tan(65π​)=−tan(6π​)=−3​1​


🔁 Final Answer Box:

tan⁡(5π6)=−13\boxed{\tan\left(\frac{5\pi}{6}\right) = -\frac{1}{\sqrt{3}}}tan(65π​)=−3​1​​

This value is exact and comes from understanding the unit circle and reference angles, which is a key part of trigonometry.

Scroll to Top