Enter the orbital diagram for the ion Cd2+Cd2+.

Enter the orbital diagram for the ion Cd2+Cd2+. Drag the appropriate labels to their respective targets. Labels can be used once, more than once, or not at all. Not all group 2 targets will be filled. Reset Help 1s Group 1 1s 4d Group 1 4d 2s Group 1 2s 4f Group 1 4f 2p Group 1 2p 5s Group 1 5s 3s Group 1 3s 5p Group 1 5p 3p Group 1 3p 5d Group 1 5d 3d Group 1 3d 5f Group 1 5f 4s Group 1 4s ↿↿ Group 2 upharpoonleft 4p Group 1 4p ↿⇂↿⇂ Group 2 upharpoonleft ! downharpoonright G1G1G1G1G1G1G1G1G1G1G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2 SubmitRequest Answer Part B Enter the orbital diagram for the ion Au+Au+. Drag the appropriate labels to their respective targets. Labels can be used once, more than once, or not at all. Not all group 2 targets will be filled. Reset Help 1s Group 1 1s 5s Group 1 5s 2s Group 1 2s 5p Group 1 5p 2p Group 1 2p 5d Group 1 5d 3s Group 1 3s 5f Group 1 5f 3p Group 1 3p 6s Group 1 6s 3d Group 1 3d 6p Group 1 6p 4s Group 1 4s 6d Group 1 6d 4p Group 1 4p 6f Group 1 6f 4d Group 1 4d ↿↿ Group 2 upharpoonleft 4f Group 1 4f ↿⇂↿⇂ Group 2 upharpoonleft ! downharpoonright G1G1G1G1G1G1G1G1G1G1G1G1G1G1G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2 SubmitRequest Answer Part C Construct the orbital diagram for the ion Mo3+Mo3+. Drag the appropriate labels to their respective targets. Labels can be used once, more than once, or not at all. Not all group 2 targets will be filled. Reset Help 1s Group 1 1s 4d Group 1 4d 2s Group 1 2s 4f Group 1 4f 2p Group 1 2p 5s Group 1 5s 3s Group 1 3s 5p Group 1 5p 3p Group 1 3p 5d Group 1 5d 3d Group 1 3d 5f Group 1 5f 4s Group 1 4s ↿↿ Group 2 upharpoonleft 4p Group 1 4p ↿⇂↿⇂ Group 2 upharpoonleft ! downharpoonright G1G1G1G1G1G1G1G1G1G1G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2

The Correct Answer and Explanation is:

Orbital Diagrams and Explanations for Cd²⁺, Au⁺, and Mo³⁺


Part A: Cd²⁺ Ion Orbital Diagram

Electron configuration of neutral Cd:
Cd (Z = 48):
[Kr] 4d¹⁰ 5s²

Cd²⁺ loses 2 electrons, typically from the 5s orbital:

Cd²⁺:
[Kr] 4d¹⁰

Orbital Diagram:

csharpCopyEdit1s ↑↓  2s ↑↓  2p ↑↓↑↓↑↓  3s ↑↓  3p ↑↓↑↓↑↓  4s ↑↓  3d ↑↓↑↓↑↓↑↓↑↓↑↓↑↓  4p ↑↓↑↓↑↓  4d ↑↓↑↓↑↓↑↓↑↓↑↓  (5s is empty)

Part B: Au⁺ Ion Orbital Diagram

Electron configuration of neutral Au:
Au (Z = 79):
[Xe] 4f¹⁴ 5d¹⁰ 6s¹

Au⁺ loses 1 electron, removed from the 6s orbital:

Au⁺:
[Xe] 4f¹⁴ 5d¹⁰

Orbital Diagram:

csharpCopyEdit1s ↑↓  2s ↑↓  2p ↑↓↑↓↑↓  3s ↑↓  3p ↑↓↑↓↑↓  4s ↑↓  3d ↑↓↑↓↑↓↑↓↑↓↑↓  4p ↑↓↑↓↑↓  
4d ↑↓↑↓↑↓↑↓↑↓  5s ↑↓  5p ↑↓↑↓↑↓  4f ↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓  5d ↑↓↑↓↑↓↑↓↑↓
(6s is empty)

Part C: Mo³⁺ Ion Orbital Diagram

Electron configuration of neutral Mo:
Mo (Z = 42):
Expected: [Kr] 5s¹ 4d⁵ (due to stability)

Mo³⁺ loses 3 electrons, first from 5s and then 4d:

Mo³⁺:
[Kr] 4d³

Orbital Diagram:

pgsqlCopyEdit1s ↑↓  2s ↑↓  2p ↑↓↑↓↑↓  3s ↑↓  3p ↑↓↑↓↑↓  4s ↑↓  3d ↑↓↑↓↑↓↑↓↑↓↑↓  4p ↑↓↑↓↑↓  
4d ↑↑↑  (3 electrons in separate 4d orbitals, following Hund’s rule)  
(5s is empty)

Explanation

Electron configurations and orbital diagrams follow the Aufbau principle, Pauli exclusion principle, and Hund’s rule. These rules govern the order of orbital filling and how electrons are arranged in orbitals.

Cd²⁺ (Cadmium ion):

Cadmium’s atomic number is 48. In its neutral state, its configuration ends in 5s² 4d¹⁰. When it becomes Cd²⁺, it loses the two 5s electrons first, leaving a full 4d subshell (4d¹⁰). This makes Cd²⁺ a d¹⁰ system with a stable noble-gas-like configuration and a diamagnetic character (no unpaired electrons).

Au⁺ (Gold ion):

Gold (Z = 79) has a filled 5d subshell and one electron in the 6s orbital (6s¹). Upon ionization to Au⁺, it loses that lone 6s electron, resulting in a configuration of 4f¹⁴ 5d¹⁰. This again gives a fully filled d-subshell, contributing to gold’s relative inertness and stability as Au⁺. The configuration is also diamagnetic.

Mo³⁺ (Molybdenum ion):

Molybdenum (Z = 42) is a special case where electron configuration adjusts for stability: it adopts 5s¹ 4d⁵ rather than 5s² 4d⁴. When it becomes Mo³⁺, it loses one 5s electron and two 4d electrons, leaving 4d³. According to Hund’s rule, the three 4d electrons will occupy three separate orbitals with parallel spins to minimize electron repulsion, leading to paramagnetism due to three unpaired electrons.

These diagrams help understand atomic properties like magnetism, chemical behavior, and ion stability.

Scroll to Top