Evaluate the indefinite integral by using the given substitution to reduce the integral to standard form.

Evaluate the indefinite integral by using the given substitution to reduce the integral to standard form.\
, a.
, b.
\ a. Using
,
\ b. Using
,

The Correct Answer and Explanation is:

We are given the integral:∫6csc⁡2(3x)cot⁡(3x) dx\int 6 \csc^2(3x) \cot(3x)\, dx∫6csc2(3x)cot(3x)dx

We are to evaluate it using two different substitutions:


a. Using u=cot⁡(3x)u = \cot(3x)u=cot(3x):

Step 1: Differentiate u=cot⁡(3x)u = \cot(3x)u=cot(3x)dudx=−3csc⁡2(3x)⇒du=−3csc⁡2(3x) dx\frac{du}{dx} = -3 \csc^2(3x) \quad \Rightarrow \quad du = -3 \csc^2(3x) \, dxdxdu​=−3csc2(3x)⇒du=−3csc2(3x)dx

Solve for csc⁡2(3x) dx\csc^2(3x)\, dxcsc2(3x)dx:csc⁡2(3x) dx=−13 du\csc^2(3x)\, dx = -\frac{1}{3} \, ducsc2(3x)dx=−31​du

Now substitute into the integral:∫6csc⁡2(3x)cot⁡(3x) dx=∫6cot⁡(3x)⋅csc⁡2(3x) dx\int 6 \csc^2(3x) \cot(3x) \, dx = \int 6 \cot(3x) \cdot \csc^2(3x) \, dx∫6csc2(3x)cot(3x)dx=∫6cot(3x)⋅csc2(3x)dx

Substitute cot⁡(3x)=u\cot(3x) = ucot(3x)=u, and csc⁡2(3x) dx=−13du\csc^2(3x)\, dx = -\frac{1}{3} ducsc2(3x)dx=−31​du:=∫6u⋅(−13) du=−2∫u du=−2⋅u22+C=−u2+C= \int 6u \cdot \left(-\frac{1}{3}\right) \, du = -2 \int u \, du = -2 \cdot \frac{u^2}{2} + C = -u^2 + C=∫6u⋅(−31​)du=−2∫udu=−2⋅2u2​+C=−u2+C

Substitute back u=cot⁡(3x)u = \cot(3x)u=cot(3x):−cot⁡2(3x)+C\boxed{-\cot^2(3x) + C}−cot2(3x)+C​


b. Using u=csc⁡(3x)u = \csc(3x)u=csc(3x):

Step 1: Differentiate u=csc⁡(3x)u = \csc(3x)u=csc(3x)dudx=−3csc⁡(3x)cot⁡(3x)⇒du=−3csc⁡(3x)cot⁡(3x) dx\frac{du}{dx} = -3 \csc(3x) \cot(3x) \quad \Rightarrow \quad du = -3 \csc(3x) \cot(3x) \, dxdxdu​=−3csc(3x)cot(3x)⇒du=−3csc(3x)cot(3x)dx

Solve for csc⁡(3x)cot⁡(3x)dx\csc(3x) \cot(3x) dxcsc(3x)cot(3x)dx:csc⁡(3x)cot⁡(3x) dx=−13 du\csc(3x) \cot(3x)\, dx = -\frac{1}{3} \, ducsc(3x)cot(3x)dx=−31​du

Now write the integral in terms of uuu:∫6csc⁡2(3x)cot⁡(3x) dx=∫6csc⁡(3x)⋅csc⁡(3x)cot⁡(3x) dx\int 6 \csc^2(3x) \cot(3x) \, dx = \int 6 \csc(3x) \cdot \csc(3x) \cot(3x) \, dx∫6csc2(3x)cot(3x)dx=∫6csc(3x)⋅csc(3x)cot(3x)dx

Group: csc⁡(3x)cot⁡(3x) dx=−13du\csc(3x) \cot(3x)\, dx = -\frac{1}{3} ducsc(3x)cot(3x)dx=−31​du, so:=∫6csc⁡(3x)⋅(−13) du=−2∫u du=−u2+C= \int 6 \csc(3x) \cdot (-\frac{1}{3}) \, du = -2 \int u \, du = -u^2 + C=∫6csc(3x)⋅(−31​)du=−2∫udu=−u2+C

Substitute back u=csc⁡(3x)u = \csc(3x)u=csc(3x):−csc⁡2(3x)+C\boxed{-\csc^2(3x) + C}−csc2(3x)+C​


📘 Explanation

To evaluate the integral ∫6csc⁡2(3x)cot⁡(3x) dx\int 6 \csc^2(3x) \cot(3x)\, dx∫6csc2(3x)cot(3x)dx, we use u-substitution, a technique that simplifies a complex expression into a standard integral form.

In part (a), we let u=cot⁡(3x)u = \cot(3x)u=cot(3x), a function whose derivative involves csc⁡2(3x)\csc^2(3x)csc2(3x), which is present in the integrand. By differentiating uuu, we find du=−3csc⁡2(3x)dxdu = -3 \csc^2(3x) dxdu=−3csc2(3x)dx. This tells us how to express part of the integrand in terms of dududu. When we rearrange, we get csc⁡2(3x)dx=−13du\csc^2(3x) dx = -\frac{1}{3} ducsc2(3x)dx=−31​du, and substitute into the integral. The original expression becomes ∫6u(−13)du=−2∫u du\int 6u(-\frac{1}{3}) du = -2 \int u\, du∫6u(−31​)du=−2∫udu, a basic polynomial integral. Solving yields −u2+C-u^2 + C−u2+C, and substituting back gives −cot⁡2(3x)+C-\cot^2(3x) + C−cot2(3x)+C.

In part (b), we instead use u=csc⁡(3x)u = \csc(3x)u=csc(3x), another trigonometric identity involved in the integrand. Differentiating gives du=−3csc⁡(3x)cot⁡(3x)dxdu = -3 \csc(3x) \cot(3x) dxdu=−3csc(3x)cot(3x)dx, and solving gives csc⁡(3x)cot⁡(3x)dx=−13du\csc(3x)\cot(3x) dx = -\frac{1}{3} ducsc(3x)cot(3x)dx=−31​du. The original integral is rewritten as ∫6csc⁡(3x)⋅csc⁡(3x)cot⁡(3x)dx=∫6csc⁡(3x)⋅(−13)du\int 6 \csc(3x) \cdot \csc(3x) \cot(3x) dx = \int 6 \csc(3x) \cdot (-\frac{1}{3}) du∫6csc(3x)⋅csc(3x)cot(3x)dx=∫6csc(3x)⋅(−31​)du. This again reduces to a simple polynomial form: −2∫u du=−u2+C-2 \int u\, du = -u^2 + C−2∫udu=−u2+C. Replacing uuu yields the final result: −csc⁡2(3x)+C-\csc^2(3x) + C−csc2(3x)+C.

Each method is valid and demonstrates the power of substitution for integrating complex trigonometric expressions.

Scroll to Top