Calculate the packing efficiency of the body-centered cubic unit cell


Calculate the packing efficiency of the body-centered cubic unit cell. Show your work. Drag the appropriate labels to their respective targets. 74

52
68

1 atom

2 atoms

4 atoms

Submit Request Answer Group 1 Group 4 Group 2

Group 2 Group 2 Group 2 %

Group 2
Reset Help

The Correct Answer and Explanation is:

Step-by-Step Explanation (Like a Textbook)

🔹 1. Understand the Structure

A BCC unit cell has:

  • 2 atoms per unit cell (1 from the center, 1 from the corners combined)
  • Atoms touch along the body diagonal of the cube.

🔹 2. Volume of Atoms in the Unit Cell (V_atoms)

Each atom has volume: Vatom=43πr3V_{\text{atom}} = \frac{4}{3}\pi r^3Vatom​=34​πr3

Since BCC has 2 atoms per unit cell: Vatoms=2×43πr3=83πr3V_{\text{atoms}} = 2 \times \frac{4}{3}\pi r^3 = \frac{8}{3}\pi r^3Vatoms​=2×34​πr3=38​πr3

  • Group 1: 2 atoms
  • Group 4: 43πr3\frac{4}{3}\pi r^334​πr3
  • Group 2: 83πr3\frac{8}{3}\pi r^338​πr3

🔹 3. Volume of the Unit Cell (V_unit cell)

Atoms in BCC touch along the body diagonal: body diagonal=4r=3l⇒l=4r3\text{body diagonal} = 4r = \sqrt{3}l \Rightarrow l = \frac{4r}{\sqrt{3}}body diagonal=4r=3​l⇒l=3​4r​

So, Vunit cell=l3=(4r3)3V_{\text{unit cell}} = l^3 = \left( \frac{4r}{\sqrt{3}} \right)^3Vunit cell​=l3=(3​4r​)3

  • Group 2: (4r3)3\left(\frac{4r}{\sqrt{3}}\right)^3(3​4r​)3

🔹 4. Packing Efficiency (%V_filled)

%Vfilled=VatomsVunit cell×100%=83πr3(4r3)3×100%\%\text{V}_{\text{filled}} = \frac{V_{\text{atoms}}}{V_{\text{unit cell}}} \times 100\% = \frac{\frac{8}{3}\pi r^3}{\left( \frac{4r}{\sqrt{3}} \right)^3} \times 100\%%Vfilled​=Vunit cell​Vatoms​​×100%=(3​4r​)338​πr3​×100%

Simplifying: =83πr364r333×100%=8π64/3×100%=π38×100%≈68%= \frac{\frac{8}{3}\pi r^3}{\frac{64r^3}{3\sqrt{3}}} \times 100\% = \frac{8\pi}{64/\sqrt{3}} \times 100\% = \frac{\pi \sqrt{3}}{8} \times 100\% \approx 68\%=33​64r3​38​πr3​×100%=64/3​8π​×100%=8π3​​×100%≈68%

  • Group 3: π38\frac{\pi \sqrt{3}}{8}8π3​​
  • Group 5: 68

Final Label Placement

LabelGoes To
Group 12 atoms
Group 443πr3\frac{4}{3} \pi r^334​πr3
Group 283πr3\frac{8}{3} \pi r^338​πr3, (4r3)3\left(\frac{4r}{\sqrt{3}}\right)^3(3​4r​)3
Group 3π38\frac{\pi \sqrt{3}}{8}8π3​​
Group 568

🧠 Concept Summary

  • BCC has 2 atoms per unit cell.
  • Packing efficiency is the fraction of unit cell volume occupied by atoms.
  • The derivation involves using geometry (atoms touch along the diagonal) and volume formulas.
  • Final packing efficiency of BCC is approximately 68%, meaning 68% of the space is filled with atoms while the rest is empty space.
Scroll to Top