Evaluate the integral

The Correct Answer and Explanation is:

1. ∫sin⁡5(2t)cos⁡2(2t) dt\int \sin^5(2t) \cos^2(2t)\, dt∫sin5(2t)cos2(2t)dt

Solution:

Use substitution:
Let u=sin⁡(2t)⇒du=2cos⁡(2t) dt⇒du2=cos⁡(2t) dtu = \sin(2t) \Rightarrow du = 2\cos(2t)\, dt \Rightarrow \frac{du}{2} = \cos(2t)\, dtu=sin(2t)⇒du=2cos(2t)dt⇒2du​=cos(2t)dt

We write: sin⁡5(2t)cos⁡2(2t) dt=u5cos⁡(2t)⋅cos⁡(2t) dt=u5cos⁡2(2t) dt\sin^5(2t)\cos^2(2t)\, dt = u^5\cos(2t)\cdot \cos(2t)\, dt = u^5 \cos^2(2t)\, dtsin5(2t)cos2(2t)dt=u5cos(2t)⋅cos(2t)dt=u5cos2(2t)dt

But we still have another cos⁡(2t)\cos(2t)cos(2t), so instead: write: sin⁡5(2t)cos⁡2(2t)=(sin⁡4(2t)sin⁡(2t))cos⁡2(2t)⇒(sin⁡4(2t)cos⁡2(2t))sin⁡(2t)\sin^5(2t)\cos^2(2t) = (\sin^4(2t)\sin(2t))\cos^2(2t) \Rightarrow (\sin^4(2t)\cos^2(2t))\sin(2t)sin5(2t)cos2(2t)=(sin4(2t)sin(2t))cos2(2t)⇒(sin4(2t)cos2(2t))sin(2t)

Use identity sin⁡2(2t)=1−cos⁡2(2t)\sin^2(2t) = 1 – \cos^2(2t)sin2(2t)=1−cos2(2t), so: sin⁡4(2t)=(sin⁡2(2t))2=(1−cos⁡2(2t))2\sin^4(2t) = (\sin^2(2t))^2 = (1 – \cos^2(2t))^2sin4(2t)=(sin2(2t))2=(1−cos2(2t))2

Now let u=cos⁡(2t)u = \cos(2t)u=cos(2t), then du=−2sin⁡(2t)dtdu = -2\sin(2t) dtdu=−2sin(2t)dt

So, ∫sin⁡5(2t)cos⁡2(2t) dt=∫(1−u2)2u2⋅(−12du)\int \sin^5(2t) \cos^2(2t)\, dt = \int (1 – u^2)^2 u^2 \cdot \left(-\frac{1}{2} du\right)∫sin5(2t)cos2(2t)dt=∫(1−u2)2u2⋅(−21​du) =−12∫u2(1−u2)2du=−12∫u2(1−2u2+u4)du= -\frac{1}{2} \int u^2 (1 – u^2)^2 du = -\frac{1}{2} \int u^2 (1 – 2u^2 + u^4) du=−21​∫u2(1−u2)2du=−21​∫u2(1−2u2+u4)du =−12∫(u2−2u4+u6)du=−12(u33−2u55+u77)+C= -\frac{1}{2} \int (u^2 – 2u^4 + u^6) du = -\frac{1}{2} \left( \frac{u^3}{3} – \frac{2u^5}{5} + \frac{u^7}{7} \right) + C=−21​∫(u2−2u4+u6)du=−21​(3u3​−52u5​+7u7​)+C

Substitute back u=cos⁡(2t)u = \cos(2t)u=cos(2t): =−12(cos⁡3(2t)3−2cos⁡5(2t)5+cos⁡7(2t)7)+C= -\frac{1}{2} \left( \frac{\cos^3(2t)}{3} – \frac{2\cos^5(2t)}{5} + \frac{\cos^7(2t)}{7} \right) + C=−21​(3cos3(2t)​−52cos5(2t)​+7cos7(2t)​)+C


2. ∫t4ln⁡t dt\int t^4 \ln t\, dt∫t4lntdt

Solution:

Use integration by parts:

Let
u=ln⁡t⇒du=1tdtu = \ln t \Rightarrow du = \frac{1}{t} dtu=lnt⇒du=t1​dt
dv=t4dt⇒v=t55dv = t^4 dt \Rightarrow v = \frac{t^5}{5}dv=t4dt⇒v=5t5​

Then, ∫t4ln⁡t dt=t55ln⁡t−∫t55⋅1tdt=t55ln⁡t−15∫t4dt\int t^4 \ln t\, dt = \frac{t^5}{5} \ln t – \int \frac{t^5}{5} \cdot \frac{1}{t} dt = \frac{t^5}{5} \ln t – \frac{1}{5} \int t^4 dt∫t4lntdt=5t5​lnt−∫5t5​⋅t1​dt=5t5​lnt−51​∫t4dt =t55ln⁡t−15⋅t55+C=t55ln⁡t−t525+C= \frac{t^5}{5} \ln t – \frac{1}{5} \cdot \frac{t^5}{5} + C = \frac{t^5}{5} \ln t – \frac{t^5}{25} + C=5t5​lnt−51​⋅5t5​+C=5t5​lnt−25t5​+C


3. ∫x5+1×3−3×2−10x dx\int \frac{x^5 + 1}{x^3 – 3x^2 – 10x}\, dx∫x3−3×2−10xx5+1​dx

Solution:

We use polynomial long division first, since degree of numerator > denominator.

Let’s divide x5+1x^5 + 1×5+1 by x(x2−3x−10)x(x^2 – 3x – 10)x(x2−3x−10).

After long division:

  • Quotient: x2+3x+9x^2 + 3x + 9×2+3x+9
  • Remainder: 91x+1×3−3×2−10x\frac{91x + 1}{x^3 – 3x^2 – 10x}x3−3×2−10x91x+1​

Now use partial fraction decomposition on the rational part.

Denominator factors: x(x−5)(x+2)x(x – 5)(x + 2)x(x−5)(x+2)

Now write: 91x+1x(x−5)(x+2)=Ax+Bx−5+Cx+2\frac{91x + 1}{x(x – 5)(x + 2)} = \frac{A}{x} + \frac{B}{x – 5} + \frac{C}{x + 2}x(x−5)(x+2)91x+1​=xA​+x−5B​+x+2C​

Solve for A, B, C using the cover-up method or system of equations. Then integrate term by term:

Final answer (after integrating all parts): ∫x5+1×3−3×2−10xdx=x33+3×22+9x+Aln⁡∣x∣+Bln⁡∣x−5∣+Cln⁡∣x+2∣+C\int \frac{x^5 + 1}{x^3 – 3x^2 – 10x} dx = \frac{x^3}{3} + \frac{3x^2}{2} + 9x + A\ln|x| + B\ln|x – 5| + C\ln|x + 2| + C∫x3−3×2−10xx5+1​dx=3×3​+23×2​+9x+Aln∣x∣+Bln∣x−5∣+Cln∣x+2∣+C


4. ∫tan⁡3xcos⁡3x dx\int \frac{\tan^3 x}{\cos^3 x}\, dx∫cos3xtan3x​dx

Solution:

We can write: tan⁡3x=sin⁡3xcos⁡3x⇒sin⁡3xcos⁡6x\tan^3 x = \frac{\sin^3 x}{\cos^3 x} \Rightarrow \frac{\sin^3 x}{\cos^6 x}tan3x=cos3xsin3x​⇒cos6xsin3x​

So, the integral becomes: ∫sin⁡3xcos⁡6x dx=∫(1−cos⁡2x)sin⁡xcos⁡6xdx\int \frac{\sin^3 x}{\cos^6 x}\, dx = \int \frac{(1 – \cos^2 x)\sin x}{\cos^6 x} dx∫cos6xsin3x​dx=∫cos6x(1−cos2x)sinx​dx

Let u=cos⁡x⇒du=−sin⁡x dxu = \cos x \Rightarrow du = -\sin x\, dxu=cosx⇒du=−sinxdx

So, =−∫1−u2u6du=−∫(1u6−u2u6)du=−∫(u−6−u−4)du= -\int \frac{1 – u^2}{u^6} du = -\int \left( \frac{1}{u^6} – \frac{u^2}{u^6} \right) du = -\int \left( u^{-6} – u^{-4} \right) du=−∫u61−u2​du=−∫(u61​−u6u2​)du=−∫(u−6−u−4)du =−(u−5−5−u−3−3)=15u5−13u3+C= -\left( \frac{u^{-5}}{-5} – \frac{u^{-3}}{-3} \right) = \frac{1}{5u^5} – \frac{1}{3u^3} + C=−(−5u−5​−−3u−3​)=5u51​−3u31​+C

Substitute back u=cos⁡xu = \cos xu=cosx: =15cos⁡5x−13cos⁡3x+C= \frac{1}{5\cos^5 x} – \frac{1}{3\cos^3 x} + C=5cos5x1​−3cos3x1​+C


5. ∫x2−9×3 dx\int \frac{\sqrt{x^2 – 9}}{x^3}\, dx∫x3x2−9​​dx

Solution:

Use trigonometric substitution:
Let x=3sec⁡θ⇒dx=3sec⁡θtan⁡θ dθx = 3\sec\theta \Rightarrow dx = 3\sec\theta\tan\theta\, d\thetax=3secθ⇒dx=3secθtanθdθ

Then, x2−9=9sec⁡2θ−9=9tan⁡2θ=3tan⁡θ\sqrt{x^2 – 9} = \sqrt{9\sec^2\theta – 9} = \sqrt{9\tan^2\theta} = 3\tan\thetax2−9​=9sec2θ−9​=9tan2θ​=3tanθ

Now substitute: ∫3tan⁡θ(27sec⁡3θ)⋅3sec⁡θtan⁡θ dθ=∫9tan⁡2θ27sec⁡2θdθ=13∫tan⁡2θcos⁡2θ dθ\int \frac{3\tan\theta}{(27\sec^3\theta)} \cdot 3\sec\theta\tan\theta\, d\theta = \int \frac{9\tan^2\theta}{27\sec^2\theta} d\theta = \frac{1}{3} \int \tan^2\theta \cos^2\theta\, d\theta∫(27sec3θ)3tanθ​⋅3secθtanθdθ=∫27sec2θ9tan2θ​dθ=31​∫tan2θcos2θdθ

But tan⁡2θ=sec⁡2θ−1\tan^2\theta = \sec^2\theta – 1tan2θ=sec2θ−1

So: =13∫(sec⁡2θ−1)cos⁡2θ dθ=13∫(1−cos⁡2θ) dθ=13∫sin⁡2θ dθ= \frac{1}{3} \int (\sec^2\theta – 1)\cos^2\theta\, d\theta = \frac{1}{3} \int (1 – \cos^2\theta)\, d\theta = \frac{1}{3} \int \sin^2\theta\, d\theta=31​∫(sec2θ−1)cos2θdθ=31​∫(1−cos2θ)dθ=31​∫sin2θdθ

Use identity sin⁡2θ=1−cos⁡(2θ)2\sin^2\theta = \frac{1 – \cos(2\theta)}{2}sin2θ=21−cos(2θ)​

Then: =13⋅12∫(1−cos⁡(2θ)) dθ=16(θ−sin⁡(2θ)2)+C= \frac{1}{3} \cdot \frac{1}{2} \int (1 – \cos(2\theta))\, d\theta = \frac{1}{6} (\theta – \frac{\sin(2\theta)}{2}) + C=31​⋅21​∫(1−cos(2θ))dθ=61​(θ−2sin(2θ)​)+C

Back-substitute θ=sec⁡−1(x/3)\theta = \sec^{-1}(x/3)θ=sec−1(x/3), and convert to xxx.

Scroll to Top