What is the volume of one mole of gas at “Standard Temperature and Pressure” (STP), that is, 1.00 atm and 0°C

What is the volume of one mole of gas at "Standard Temperature and Pressure" (STP), that is, 1.00 atm and 0°C? Number of mole = 1(n) Temp. T = 0°C = 273.15 K Pressure, P = 1 bar (atm) PV=nRT R = 0.08314 bar 2) What is the volume of one mole of gas at room temperature (20°C)? 3) You inflate your car tires to 2.00 atm pressure at 20°C. After driving on the highway, the temperature of your tires goes up to 50°C. What is the pressure in the tires? 4) What does 1.00 L of nitrogen (N2) weigh at 20°C? Hint: you calculated the volume of one mole of gas at 20°C for question 2. One liter is what fraction of this volume? 5) An internal combustion engine burns fuel inside a cylinder. The heat expands the gases in the cylinder and pushes against the piston. If the temperature in the cylinder increases from 300°C to 600°C, how much does the pressure increase? What if the final temperature is 800°C?

The Correct Answer and Explanation is:

Ideal Gas Calculations and Explanation

To solve these questions, we use the Ideal Gas Law: PV=nRTPV = nRTPV=nRT

Where:

  • PPP is pressure
  • VVV is volume
  • nnn is number of moles
  • RRR is the ideal gas constant
  • TTT is temperature in Kelvin

We’ll use the gas constant:

  • R=0.08314 L\cdotpbar/mol\cdotpKR = 0.08314 \ \text{L·bar/mol·K}R=0.08314 L\cdotpbar/mol\cdotpK

1. Volume of 1 mole of gas at STP (1.00 atm, 0°C)

At standard temperature and pressure:

  • P=1.00 barP = 1.00 \ \text{bar}P=1.00 bar
  • T=0°C=273.15 KT = 0°C = 273.15 \ \text{K}T=0°C=273.15 K
  • n=1.00 moln = 1.00 \ \text{mol}n=1.00 mol

Using the Ideal Gas Law: V=nRTP=(1.00)(0.08314)(273.15)1.00=22.71 LV = \frac{nRT}{P} = \frac{(1.00)(0.08314)(273.15)}{1.00} = 22.71 \ \text{L}V=PnRT​=1.00(1.00)(0.08314)(273.15)​=22.71 L

Answer: Volume = 22.71 L


2. Volume of 1 mole of gas at 20°C

At:

  • T=20°C=293.15 KT = 20°C = 293.15 \ \text{K}T=20°C=293.15 K
  • P=1.00 barP = 1.00 \ \text{bar}P=1.00 bar

V=(1.00)(0.08314)(293.15)1.00=24.38 LV = \frac{(1.00)(0.08314)(293.15)}{1.00} = 24.38 \ \text{L}V=1.00(1.00)(0.08314)(293.15)​=24.38 L

Answer: Volume = 24.38 L


3. Tire pressure after heating from 20°C to 50°C

Use Gay-Lussac’s Law (constant volume): P1T1=P2T2\frac{P_1}{T_1} = \frac{P_2}{T_2}T1​P1​​=T2​P2​​

Convert to Kelvin:

  • T1=20°C=293.15 KT_1 = 20°C = 293.15 \ \text{K}T1​=20°C=293.15 K
  • T2=50°C=323.15 KT_2 = 50°C = 323.15 \ \text{K}T2​=50°C=323.15 K
  • P1=2.00 atmP_1 = 2.00 \ \text{atm}P1​=2.00 atm

P2=P1⋅T2T1=2.00⋅323.15293.15=2.21 atmP_2 = P_1 \cdot \frac{T_2}{T_1} = 2.00 \cdot \frac{323.15}{293.15} = 2.21 \ \text{atm}P2​=P1​⋅T1​T2​​=2.00⋅293.15323.15​=2.21 atm

Answer: Final pressure = 2.21 atm


4. Mass of 1.00 L of nitrogen gas (N₂) at 20°C

From Q2, 1 mole of gas at 20°C occupies 24.38 L

So, 1.00 L is: 1.0024.38=0.041 mol\frac{1.00}{24.38} = 0.041 \ \text{mol}24.381.00​=0.041 mol

Molar mass of nitrogen (N₂) = 28.02 g/mol

Mass: 0.041⋅28.02=1.15 g0.041 \cdot 28.02 = 1.15 \ \text{g}0.041⋅28.02=1.15 g

Answer: 1.15 g


5. Pressure increase in engine cylinder: 300°C to 600°C and 800°C

Convert to Kelvin:

  • Initial: T1=300+273.15=573.15 KT_1 = 300 + 273.15 = 573.15 \ \text{K}T1​=300+273.15=573.15 K
  • Case 1 Final: T2=600+273.15=873.15 KT_2 = 600 + 273.15 = 873.15 \ \text{K}T2​=600+273.15=873.15 K
  • Case 2 Final: T3=800+273.15=1073.15 KT_3 = 800 + 273.15 = 1073.15 \ \text{K}T3​=800+273.15=1073.15 K

Again using: P2P1=T2T1\frac{P_2}{P_1} = \frac{T_2}{T_1}P1​P2​​=T1​T2​​

Case 1: P2P1=873.15573.15=1.52\frac{P_2}{P_1} = \frac{873.15}{573.15} = 1.52P1​P2​​=573.15873.15​=1.52

Case 2: P3P1=1073.15573.15=1.87\frac{P_3}{P_1} = \frac{1073.15}{573.15} = 1.87P1​P3​​=573.151073.15​=1.87

Answers:

  • Pressure increases by 1.52× when temperature rises to 600°C
  • Pressure increases by 1.87× when temperature rises to 800°C

Summary

This set of questions uses the Ideal Gas Law and gas behavior laws (Boyle’s, Charles’s, Gay-Lussac’s) to relate pressure, volume, and temperature. Gas volume expands with temperature, and pressure increases if gas is heated in a fixed volume. These principles are critical in both everyday and industrial applications like tire inflation and internal combustion engines.

Scroll to Top