find the exact value of cos 75 degrees using sum or difference angle identities

find the exact value of cos 75 degrees using sum or difference angle identities

The Correct Answer and Explanation is:

To find the exact value of cos(75°) using sum or difference identities, we express 75° as the sum of two known angles with known cosine and sine values.
We know: 75∘=45∘+30∘75^\circ = 45^\circ + 30^\circ75∘=45∘+30∘

Now apply the cosine of sum identity: cos⁡(A+B)=cos⁡Acos⁡B−sin⁡Asin⁡B\cos(A + B) = \cos A \cos B – \sin A \sin Bcos(A+B)=cosAcosB−sinAsinB

Substitute A=45∘A = 45^\circA=45∘ and B=30∘B = 30^\circB=30∘: cos⁡(75∘)=cos⁡(45∘+30∘)=cos⁡45∘cos⁡30∘−sin⁡45∘sin⁡30∘\cos(75^\circ) = \cos(45^\circ + 30^\circ) = \cos 45^\circ \cos 30^\circ – \sin 45^\circ \sin 30^\circcos(75∘)=cos(45∘+30∘)=cos45∘cos30∘−sin45∘sin30∘

Recall the exact trigonometric values:

  • cos⁡45∘=22\cos 45^\circ = \frac{\sqrt{2}}{2}cos45∘=22​​
  • sin⁡45∘=22\sin 45^\circ = \frac{\sqrt{2}}{2}sin45∘=22​​
  • cos⁡30∘=32\cos 30^\circ = \frac{\sqrt{3}}{2}cos30∘=23​​
  • sin⁡30∘=12\sin 30^\circ = \frac{1}{2}sin30∘=21​

Substitute these into the identity: cos⁡(75∘)=(22)(32)−(22)(12)\cos(75^\circ) = \left(\frac{\sqrt{2}}{2}\right)\left(\frac{\sqrt{3}}{2}\right) – \left(\frac{\sqrt{2}}{2}\right)\left(\frac{1}{2}\right)cos(75∘)=(22​​)(23​​)−(22​​)(21​) cos⁡(75∘)=64−24\cos(75^\circ) = \frac{\sqrt{6}}{4} – \frac{\sqrt{2}}{4}cos(75∘)=46​​−42​​ cos⁡(75∘)=6−24\cos(75^\circ) = \frac{\sqrt{6} – \sqrt{2}}{4}cos(75∘)=46​−2​​


Final Answer:

cos⁡(75∘)=6−24\boxed{\cos(75^\circ) = \frac{\sqrt{6} – \sqrt{2}}{4}}cos(75∘)=46​−2​​​


Explanation:

This problem utilizes a fundamental trigonometric identity to evaluate a non-standard angle. Since 75° is not a common angle on the unit circle, it must be expressed as a sum or difference of angles with known trigonometric values. The cosine of the sum identity provides a reliable method for calculating the exact value. After identifying 75° as 45° + 30°, the identity is applied by substituting in the known values for cosine and sine at those angles. The result simplifies to a rational expression involving square roots, providing the exact trigonometric value of cosine at 75 degrees without needing a calculator.

Scroll to Top