Find the indicated roots and graph them in the complex plane.

Find the indicated roots and graph them in the complex plane. The fifth roots of 32 Im W1 i Wo W2 -2 -1 W2 -2 W3 W1 W3 Im WA Re 2 Wo i -2 W2 Im W1 i W3 Im W1 W2 W2 Wo Re 2 W4 Wo Re Re -2 2 2 -1 W4 W3 W4 Referring to the labels from the graph you selected above, give the exact roots. (Express
in radians.)

The Correct Answer and Explanation is:

To find the fifth roots of 323232, express the number in polar (trigonometric) form. The number 32 is a real number with no imaginary part:32=32(cos⁡(0)+isin⁡(0))32 = 32(\cos(0) + i\sin(0))32=32(cos(0)+isin(0))

Let the complex number be z=r(cos⁡(θ)+isin⁡(θ))z = r(\cos(\theta) + i\sin(\theta))z=r(cos(θ)+isin(θ)), where r=32r = 32r=32 and θ=0\theta = 0θ=0.

To find the fifth roots of a complex number, apply De Moivre’s Theorem:wk=325(cos⁡(2πk5)+isin⁡(2πk5)),k=0,1,2,3,4w_k = \sqrt[5]{32} \left( \cos\left(\frac{2\pi k}{5}\right) + i\sin\left(\frac{2\pi k}{5}\right) \right), \quad k = 0, 1, 2, 3, 4wk​=532​(cos(52πk​)+isin(52πk​)),k=0,1,2,3,4

Since 325=2\sqrt[5]{32} = 2532​=2, the roots are:

  • w0=2(cos⁡(2π(0)5)+isin⁡(2π(0)5))=2(cos⁡(0)+isin⁡(0))=2w_0 = 2\left( \cos\left(\frac{2\pi(0)}{5} \right) + i\sin\left( \frac{2\pi(0)}{5} \right) \right) = 2(\cos(0) + i\sin(0)) = 2w0​=2(cos(52π(0)​)+isin(52π(0)​))=2(cos(0)+isin(0))=2
  • w1=2(cos⁡(2π5)+isin⁡(2π5))w_1 = 2\left( \cos\left(\frac{2\pi}{5} \right) + i\sin\left( \frac{2\pi}{5} \right) \right)w1​=2(cos(52π​)+isin(52π​))
  • w2=2(cos⁡(4π5)+isin⁡(4π5))w_2 = 2\left( \cos\left(\frac{4\pi}{5} \right) + i\sin\left( \frac{4\pi}{5} \right) \right)w2​=2(cos(54π​)+isin(54π​))
  • w3=2(cos⁡(6π5)+isin⁡(6π5))w_3 = 2\left( \cos\left(\frac{6\pi}{5} \right) + i\sin\left( \frac{6\pi}{5} \right) \right)w3​=2(cos(56π​)+isin(56π​))
  • w4=2(cos⁡(8π5)+isin⁡(8π5))w_4 = 2\left( \cos\left(\frac{8\pi}{5} \right) + i\sin\left( \frac{8\pi}{5} \right) \right)w4​=2(cos(58π​)+isin(58π​))

From the graph selected (bottom right), the roots appear labeled correctly in order around the unit circle:

Exact roots:

  • w0=2(cos⁡(0π5)+isin⁡(0π5))w_0 = 2\left( \cos\left(\frac{0\pi}{5}\right) + i\sin\left(\frac{0\pi}{5}\right) \right)w0​=2(cos(50π​)+isin(50π​))
  • w1=2(cos⁡(2π5)+isin⁡(2π5))w_1 = 2\left( \cos\left(\frac{2\pi}{5}\right) + i\sin\left(\frac{2\pi}{5}\right) \right)w1​=2(cos(52π​)+isin(52π​))
  • w2=2(cos⁡(4π5)+isin⁡(4π5))w_2 = 2\left( \cos\left(\frac{4\pi}{5}\right) + i\sin\left(\frac{4\pi}{5}\right) \right)w2​=2(cos(54π​)+isin(54π​))
  • w3=2(cos⁡(6π5)+isin⁡(6π5))w_3 = 2\left( \cos\left(\frac{6\pi}{5}\right) + i\sin\left(\frac{6\pi}{5}\right) \right)w3​=2(cos(56π​)+isin(56π​))
  • w4=2(cos⁡(8π5)+isin⁡(8π5))w_4 = 2\left( \cos\left(\frac{8\pi}{5}\right) + i\sin\left(\frac{8\pi}{5}\right) \right)w4​=2(cos(58π​)+isin(58π​))

These roots are evenly spaced around the origin in the complex plane, forming a regular pentagon. Each root lies at an angle increment of 2π5\frac{2\pi}{5}52π​ radians from the previous one, creating symmetry.

Scroll to Top