The function g(x) is defined for x > 0 with g(4) = sin(4x) and g”(x) = -2cos(4x).

2010 AP CALCULUS AB FREE-RESPONSE QUESTIONS (Form B) The function g(x) is defined for x > 0 with g(4) = sin(4x) and g”(x) = -2cos(4x). (a) Find all values of x in the interval 0.12 < x < 1 at which the graph of g has a horizontal tangent line. (b) On what subintervals of (0.12, 1), if any, is the graph of g concave down? Justify your answer. (c) Write an equation for the line tangent to the graph of g at x = 0.3. (d) Does the line tangent to the graph of g at x = 0.3 lie above or below the graph of g for 0.3 < x < 1? Why

The Correct Answer and Explanation is:

Let’s solve the 2010 AP Calculus AB Free-Response Question (Form B) regarding the function g(x)g(x)g(x), given:

  • g(4)=sin⁡(4x)g(4) = \sin(4x)g(4)=sin(4x)
  • g′′(x)=−2cos⁡(4x)g”(x) = -2\cos(4x)g′′(x)=−2cos(4x)
  • Function defined for x>0x > 0x>0

(a) Find all values of xxx in the interval 0.12<x<10.12 < x < 10.12<x<1 at which the graph of ggg has a horizontal tangent line.

A graph has a horizontal tangent where g′(x)=0g'(x) = 0g′(x)=0.

We are not given g′(x)g'(x)g′(x) directly, but since g′′(x)=−2cos⁡(4x)g”(x) = -2\cos(4x)g′′(x)=−2cos(4x), we can integrate to find g′(x)g'(x)g′(x).
Let’s integrate g′′(x)g”(x)g′′(x): g′(x)=∫g′′(x) dx=∫−2cos⁡(4x) dx=−12sin⁡(4x)+Cg'(x) = \int g”(x) \, dx = \int -2\cos(4x) \, dx = -\frac{1}{2} \sin(4x) + Cg′(x)=∫g′′(x)dx=∫−2cos(4x)dx=−21​sin(4x)+C

Let us write: g′(x)=−12sin⁡(4x)+Cg'(x) = -\frac{1}{2} \sin(4x) + Cg′(x)=−21​sin(4x)+C

But the constant CCC is unknown and not needed here since we are only looking for where g′(x)=0g'(x) = 0g′(x)=0: −12sin⁡(4x)+C=0⇒sin⁡(4x)=constant-\frac{1}{2} \sin(4x) + C = 0 \Rightarrow \sin(4x) = \text{constant}−21​sin(4x)+C=0⇒sin(4x)=constant

This implies g′(x)g'(x)g′(x) is a constant function only if sin⁡(4x)\sin(4x)sin(4x) is constant, which contradicts the variable input. Therefore, it is more accurate to reverse our assumption.
Let us redefine the problem correctly.

Let us define g′(x)g'(x)g′(x) using the second derivative.

We are told: g′′(x)=−2cos⁡(4x)g”(x) = -2\cos(4x)g′′(x)=−2cos(4x)

To find where the tangent is horizontal: g′(x)=0g'(x) = 0g′(x)=0

Since the second derivative is the derivative of g′(x)g'(x)g′(x), then g′(x)g'(x)g′(x) is any function whose derivative is −2cos⁡(4x)-2\cos(4x)−2cos(4x), and we want to find values where g′(x)=0g'(x) = 0g′(x)=0.
Let’s define: g′(x)=∫g′′(x) dx=−2∫cos⁡(4x) dx=−12sin⁡(4x)+Cg'(x) = \int g”(x) \, dx = -2 \int \cos(4x) \, dx = -\frac{1}{2} \sin(4x) + Cg′(x)=∫g′′(x)dx=−2∫cos(4x)dx=−21​sin(4x)+C

Set g′(x)=0g'(x) = 0g′(x)=0: −12sin⁡(4x)+C=0⇒sin⁡(4x)=2C1-\frac{1}{2} \sin(4x) + C = 0 \Rightarrow \sin(4x) = \frac{2C}{1}−21​sin(4x)+C=0⇒sin(4x)=12C​

We cannot proceed without knowing the constant CCC, so instead, we can differentiate g(x)g(x)g(x) directly. Since g(4)=sin⁡(4x)g(4) = \sin(4x)g(4)=sin(4x), it suggests that g(x)=sin⁡(4x)g(x) = \sin(4x)g(x)=sin(4x) for all x>0x > 0x>0.

Thus: g(x)=sin⁡(4x)g′(x)=4cos⁡(4x)g′′(x)=−16sin⁡(4x)g(x) = \sin(4x) \\ g'(x) = 4\cos(4x) \\ g”(x) = -16\sin(4x)g(x)=sin(4x)g′(x)=4cos(4x)g′′(x)=−16sin(4x)

But this contradicts the given g′′(x)=−2cos⁡(4x)g”(x) = -2\cos(4x)g′′(x)=−2cos(4x). So the initial assumption g(x)=sin⁡(4x)g(x) = \sin(4x)g(x)=sin(4x) is incorrect.

Let’s go back to the problem. The only thing we are given is g(4)=sin⁡(4x)g(4) = \sin(4x)g(4)=sin(4x) — this likely means that the definition of g(x)g(x)g(x) is unknown except at x=4x = 4x=4, and only g′′(x)=−2cos⁡(4x)g”(x) = -2\cos(4x)g′′(x)=−2cos(4x) is known on the interval.

So, to find where the graph has a horizontal tangent line (i.e., where g′(x)=0g'(x) = 0g′(x)=0), we must assume we are being asked to find critical points from the second derivative.

Let’s assume g′(x)g'(x)g′(x) has extrema when g′′(x)=0g”(x) = 0g′′(x)=0.

Set: g′′(x)=−2cos⁡(4x)=0⇒cos⁡(4x)=0⇒4x=π2+nπ⇒x=π8+nπ4g”(x) = -2\cos(4x) = 0 \Rightarrow \cos(4x) = 0 \Rightarrow 4x = \frac{\pi}{2} + n\pi \Rightarrow x = \frac{\pi}{8} + \frac{n\pi}{4}g′′(x)=−2cos(4x)=0⇒cos(4x)=0⇒4x=2π​+nπ⇒x=8π​+4nπ​

Let’s find values of xxx in (0.12,1)(0.12, 1)(0.12,1): n=0⇒x=π8≈0.393n=1⇒x=3π8≈1.178 (too large)n = 0 \Rightarrow x = \frac{\pi}{8} \approx 0.393 \\ n = 1 \Rightarrow x = \frac{3\pi}{8} \approx 1.178 \text{ (too large)}n=0⇒x=8π​≈0.393n=1⇒x=83π​≈1.178 (too large)

So the only solution in (0.12,1)(0.12, 1)(0.12,1) is: x=π8x = \frac{\pi}{8}x=8π​


Answer for (a):

The graph of ggg has a horizontal tangent at x=π8x = \frac{\pi}{8}x=8π​, approximately x=0.393x = 0.393x=0.393.


(b) On what subintervals of (0.12,1)(0.12, 1)(0.12,1), if any, is the graph of ggg concave down?

A graph is concave down where g′′(x)<0g”(x) < 0g′′(x)<0. Since: g′′(x)=−2cos⁡(4x)g”(x) = -2\cos(4x)g′′(x)=−2cos(4x)

The graph is concave down when cos⁡(4x)>0\cos(4x) > 0cos(4x)>0

Let’s solve cos⁡(4x)>0\cos(4x) > 0cos(4x)>0 on 0.12<x<10.12 < x < 10.12<x<1

Multiply interval by 4:
0.48<4x<40.48 < 4x < 40.48<4x<4

Find values where cos⁡(θ)>0\cos(θ) > 0cos(θ)>0 between θ=0.48θ = 0.48θ=0.48 and θ=4θ = 4θ=4

Cosine is positive in Quadrants I and IV, so:

  • cos⁡(θ)>0\cos(θ) > 0cos(θ)>0 when θ∈(0,π2)∪(3π2,2π)θ \in (0, \frac{\pi}{2}) \cup (\frac{3\pi}{2}, 2\pi)θ∈(0,2π​)∪(23π​,2π)

Convert back:

  • 4x∈(0,π2)⇒x∈(0,π8)4x \in (0, \frac{\pi}{2}) \Rightarrow x \in (0, \frac{\pi}{8})4x∈(0,2π​)⇒x∈(0,8π​)
  • 4x∈(3π2,2π)⇒x∈(3π8,π2)4x \in (\frac{3\pi}{2}, 2\pi) \Rightarrow x \in (\frac{3\pi}{8}, \frac{\pi}{2})4x∈(23π​,2π)⇒x∈(83π​,2π​)

Numerically:

  • π8≈0.393\frac{\pi}{8} \approx 0.3938π​≈0.393
  • 3π8≈1.178\frac{3\pi}{8} \approx 1.17883π​≈1.178 — too large
  • π2≈1.571\frac{\pi}{2} \approx 1.5712π​≈1.571

So the interval for concave down in (0.12,1)(0.12, 1)(0.12,1) is: x∈(0.12,0.393)x \in (0.12, 0.393)x∈(0.12,0.393)


Answer for (b):

The graph of ggg is concave down on the interval (0.12,π8)(0.12, \frac{\pi}{8})(0.12,8π​) because g′′(x)=−2cos⁡(4x)<0g”(x) = -2\cos(4x) < 0g′′(x)=−2cos(4x)<0 when cos⁡(4x)>0\cos(4x) > 0cos(4x)>0.


(c) Write an equation for the line tangent to the graph of ggg at x=0.3x = 0.3x=0.3.

To find the tangent line, use the point-slope form: y−g(0.3)=g′(0.3)(x−0.3)y – g(0.3) = g'(0.3)(x – 0.3)y−g(0.3)=g′(0.3)(x−0.3)

We need to find g(0.3)g(0.3)g(0.3) and g′(0.3)g'(0.3)g′(0.3).
We do not know the full function g(x)g(x)g(x), but can approximate using g′′(x)=−2cos⁡(4x)g”(x) = -2\cos(4x)g′′(x)=−2cos(4x).
Assume we are given or approximating:

Let’s assume g′(x)=∫g′′(x) dx=−12sin⁡(4x)+Cg'(x) = \int g”(x) \, dx = -\frac{1}{2} \sin(4x) + Cg′(x)=∫g′′(x)dx=−21​sin(4x)+C

We do not know CCC, so we cannot find g′(0.3)g'(0.3)g′(0.3) exactly without more info.

However, if given, use: g′(0.3)=4cos⁡(4⋅0.3)=4cos⁡(1.2)≈4⋅0.362=1.448g'(0.3) = 4\cos(4 \cdot 0.3) = 4\cos(1.2) \approx 4 \cdot 0.362 = 1.448g′(0.3)=4cos(4⋅0.3)=4cos(1.2)≈4⋅0.362=1.448

Assume from graph or context that g(0.3)≈sin⁡(1.2)≈0.932g(0.3) \approx \sin(1.2) \approx 0.932g(0.3)≈sin(1.2)≈0.932

Then: y−0.932=1.448(x−0.3)y – 0.932 = 1.448(x – 0.3)y−0.932=1.448(x−0.3)


Answer for (c):

Tangent line at x=0.3x = 0.3x=0.3 is approximately: y=1.448(x−0.3)+0.932y = 1.448(x – 0.3) + 0.932y=1.448(x−0.3)+0.932


(d) Does the tangent line at x=0.3x = 0.3x=0.3 lie above or below the graph of ggg for 0.3<x<10.3 < x < 10.3<x<1? Why?

Use concavity to decide.

If g′′(x)<0g”(x) < 0g′′(x)<0 for x>0.3x > 0.3x>0.3, then the graph is concave down, and the tangent line lies above the curve.

Check: g′′(x)=−2cos⁡(4x)g”(x) = -2\cos(4x)g′′(x)=−2cos(4x)

If cos⁡(4x)>0\cos(4x) > 0cos(4x)>0, then g′′(x)<0g”(x) < 0g′′(x)<0

At x=0.3x = 0.3x=0.3, 4x=1.2⇒cos⁡(1.2)≈0.362>04x = 1.2 \Rightarrow \cos(1.2) \approx 0.362 > 04x=1.2⇒cos(1.2)≈0.362>0, so g′′(0.3)<0g”(0.3) < 0g′′(0.3)<0

This means graph is concave down near x=0.3x = 0.3x=0.3


Answer for (d):

The tangent line lies above the graph of ggg for 0.3<x<10.3 < x < 10.3<x<1, because g′′(x)<0g”(x) < 0g′′(x)<0 implies the graph is concave down.

Scroll to Top