Decomposition reaction of KClO3 can be used to produce an oxygen gas

Decomposition reaction of KClO3 can be used to produce an oxygen gas. (The other reaction product is solid KCl). a. Write a balanced chemical equation for this reaction. b. What mass of KClO3 must be decomposed to produce 126 L of oxygen gas at 133oC and 0.880 atm?

The Correct Answer and Explanation is:

To solve this problem, we will go step by step for both parts.

a. Balanced Chemical Equation:

The decomposition reaction of potassium chlorate (KClO₃) to produce potassium chloride (KCl) and oxygen gas (O₂) is represented by the following balanced chemical equation:2KClO3(s)→2KCl(s)+3O2(g)2KClO₃(s) \rightarrow 2KCl(s) + 3O₂(g)2KClO3​(s)→2KCl(s)+3O2​(g)

This shows that 2 moles of KClO₃ decompose to form 2 moles of KCl and 3 moles of oxygen gas.

b. Mass of KClO₃ required to produce 126 L of oxygen gas:

We can use the Ideal Gas Law equation to calculate the mass of KClO₃ required.

The Ideal Gas Law is:PV=nRTPV = nRTPV=nRT

Where:

  • P = pressure in atm
  • V = volume in liters (L)
  • n = number of moles of gas
  • R = ideal gas constant (0.0821 L·atm / mol·K)
  • T = temperature in Kelvin (K)

Step 1: Convert the given temperature to Kelvin.

Given temperature = 133°CT(K)=133+273=406 KT(K) = 133 + 273 = 406 \text{ K}T(K)=133+273=406 K

Step 2: Rearrange the Ideal Gas Law to find the number of moles of O₂.

n=PVRTn = \frac{PV}{RT}n=RTPV​

Substitute the given values:

  • P = 0.880 atm
  • V = 126 L
  • R = 0.0821 L·atm / mol·K
  • T = 406 K

n=(0.880)(126)(0.0821)(406)=110.8833.357≈3.32 mol O₂n = \frac{(0.880)(126)}{(0.0821)(406)} = \frac{110.88}{33.357} \approx 3.32 \text{ mol O₂}n=(0.0821)(406)(0.880)(126)​=33.357110.88​≈3.32 mol O₂

Step 3: Use stoichiometry to relate moles of O₂ to moles of KClO₃.

From the balanced chemical equation, we know that 3 moles of O₂ are produced by 2 moles of KClO₃. Therefore:moles of KClO₃=23×3.32=2.21 mol KClO₃\text{moles of KClO₃} = \frac{2}{3} \times 3.32 = 2.21 \text{ mol KClO₃}moles of KClO₃=32​×3.32=2.21 mol KClO₃

Step 4: Convert moles of KClO₃ to grams.

To convert moles of KClO₃ to grams, use the molar mass of KClO₃. The molar mass of KClO₃ is:M(KClO3)=39.1+35.5+(3×16)=122.6 g/molM(KClO₃) = 39.1 + 35.5 + (3 \times 16) = 122.6 \text{ g/mol}M(KClO3​)=39.1+35.5+(3×16)=122.6 g/mol

Now, calculate the mass of KClO₃:mass of KClO₃=2.21 mol×122.6 g/mol≈270.5 g\text{mass of KClO₃} = 2.21 \text{ mol} \times 122.6 \text{ g/mol} \approx 270.5 \text{ g}mass of KClO₃=2.21 mol×122.6 g/mol≈270.5 g

Final Answer:

The mass of KClO₃ required to produce 126 L of oxygen gas at 133°C and 0.880 atm is approximately 270.5 g.

Scroll to Top