What is the value of y in the formula shown when x = 4/5

What is the value of y in the formula shown when x = 4/5? y = 4x + √x + 0.2 – 5x y =

The Correct Answer and Explanation is:

The given formula is:

y=4x+x+0.2−5xy = 4x + \sqrt{x} + 0.2 – 5xy=4x+x​+0.2−5x

We are asked to find the value of yyy when x=45x = \frac{4}{5}x=54​.

Step-by-Step Calculation:

  1. Substitute x=45x = \frac{4}{5}x=54​ into the formula:

y=4(45)+45+0.2−5(45)y = 4\left(\frac{4}{5}\right) + \sqrt{\frac{4}{5}} + 0.2 – 5\left(\frac{4}{5}\right)y=4(54​)+54​​+0.2−5(54​)

  1. Simplify each term:
  • First, simplify 4×454 \times \frac{4}{5}4×54​: 4×45=165=3.24 \times \frac{4}{5} = \frac{16}{5} = 3.24×54​=516​=3.2
  • Next, simplify 45\sqrt{\frac{4}{5}}54​​. To calculate the square root, we can express 45\frac{4}{5}54​ as a decimal: 45=0.8\frac{4}{5} = 0.854​=0.8 Therefore: 0.8≈0.8944\sqrt{0.8} \approx 0.89440.8​≈0.8944
  • Then, calculate 5×455 \times \frac{4}{5}5×54​: 5×45=45 \times \frac{4}{5} = 45×54​=4
  1. Substitute these values into the equation:

y=3.2+0.8944+0.2−4y = 3.2 + 0.8944 + 0.2 – 4y=3.2+0.8944+0.2−4

  1. Perform the addition and subtraction:
  • First, add 3.2+0.89443.2 + 0.89443.2+0.8944: 3.2+0.8944=4.09443.2 + 0.8944 = 4.09443.2+0.8944=4.0944
  • Then, add 0.20.20.2 to the result: 4.0944+0.2=4.29444.0944 + 0.2 = 4.29444.0944+0.2=4.2944
  • Finally, subtract 4 from the result: 4.2944−4=0.29444.2944 – 4 = 0.29444.2944−4=0.2944

Final Answer:

Thus, when x=45x = \frac{4}{5}x=54​, the value of yyy is approximately 0.2944.

Scroll to Top