Find the exact value of sin⁡5π4.

The Correct Answer and Explanation is:

To find the exact value of sin⁡(5π4)\sin \left( \frac{5\pi}{4} \right)sin(45π​), we can follow these steps:

  1. Identify the angle’s position on the unit circle:
    The angle 5π4\frac{5\pi}{4}45π​ is in radians. To better understand its position, we can convert it to degrees. 5π4×180∘π=225∘.\frac{5\pi}{4} \times \frac{180^\circ}{\pi} = 225^\circ.45π​×π180∘​=225∘. The angle 225∘225^\circ225∘ lies in the third quadrant of the unit circle, where the sine function is negative.
  2. Find the reference angle:
    The reference angle is the acute angle that the terminal side of 225∘225^\circ225∘ makes with the x-axis. To find this, subtract 180∘180^\circ180∘ from 225∘225^\circ225∘: 225∘−180∘=45∘.225^\circ – 180^\circ = 45^\circ.225∘−180∘=45∘. Thus, the reference angle is 45∘45^\circ45∘ (or π4\frac{\pi}{4}4π​).
  3. Determine the sine value:
    The sine of 45∘45^\circ45∘ or π4\frac{\pi}{4}4π​ is known to be 22\frac{\sqrt{2}}{2}22​​. Since the angle 225∘225^\circ225∘ is in the third quadrant, the sine function is negative in this quadrant. Therefore: sin⁡(225∘)=−22.\sin \left( 225^\circ \right) = -\frac{\sqrt{2}}{2}.sin(225∘)=−22​​.
  4. Conclusion:
    The exact value of sin⁡(5π4)\sin \left( \frac{5\pi}{4} \right)sin(45π​) is: sin⁡(5π4)=−22.\sin \left( \frac{5\pi}{4} \right) = -\frac{\sqrt{2}}{2}.sin(45π​)=−22​​.
Scroll to Top