Find the equivalent expression. csc x csc x cot x Csc x(csc * cot x) sec x(sec * tan x) CSC_ CSC * cot x) d. sec x(sec * tan x) sec x(sec * cot.)
The Correct Answer and Explanation is:
To clarify your question, you’re asking to find the equivalent expression for a given trigonometric expression involving cosecant (csc), cotangent (cot), and secant (sec) functions. Here’s how we can break it down and simplify the expression:
Expression:
csc(x)⋅csc(x)⋅cot(x)\csc(x) \cdot \csc(x) \cdot \cot(x)csc(x)⋅csc(x)⋅cot(x)
This simplifies as: csc2(x)⋅cot(x)\csc^2(x) \cdot \cot(x)csc2(x)⋅cot(x)
Now, let’s rewrite it in a more manageable form for simplification and identify any possible trigonometric identities.
We can use some standard trigonometric identities here:
- csc(x)=1sin(x)\csc(x) = \frac{1}{\sin(x)}csc(x)=sin(x)1
- cot(x)=cos(x)sin(x)\cot(x) = \frac{\cos(x)}{\sin(x)}cot(x)=sin(x)cos(x)
Thus, the expression becomes: csc2(x)⋅cot(x)=(1sin2(x))⋅(cos(x)sin(x))\csc^2(x) \cdot \cot(x) = \left( \frac{1}{\sin^2(x)} \right) \cdot \left( \frac{\cos(x)}{\sin(x)} \right)csc2(x)⋅cot(x)=(sin2(x)1)⋅(sin(x)cos(x))
Simplifying further: =cos(x)sin3(x)= \frac{\cos(x)}{\sin^3(x)}=sin3(x)cos(x)
Next Expression: sec(x)⋅sec(x)⋅tan(x)\sec(x) \cdot \sec(x) \cdot \tan(x)sec(x)⋅sec(x)⋅tan(x)
Now, for the second part of your question: sec2(x)⋅tan(x)\sec^2(x) \cdot \tan(x)sec2(x)⋅tan(x)
Using the identity:
- sec(x)=1cos(x)\sec(x) = \frac{1}{\cos(x)}sec(x)=cos(x)1
- tan(x)=sin(x)cos(x)\tan(x) = \frac{\sin(x)}{\cos(x)}tan(x)=cos(x)sin(x)
This expression becomes: sec2(x)⋅tan(x)=(1cos2(x))⋅(sin(x)cos(x))\sec^2(x) \cdot \tan(x) = \left( \frac{1}{\cos^2(x)} \right) \cdot \left( \frac{\sin(x)}{\cos(x)} \right)sec2(x)⋅tan(x)=(cos2(x)1)⋅(cos(x)sin(x))
Simplifying: =sin(x)cos3(x)= \frac{\sin(x)}{\cos^3(x)}=cos3(x)sin(x)
Summary of Equivalent Expressions:
- For csc2(x)⋅cot(x)\csc^2(x) \cdot \cot(x)csc2(x)⋅cot(x), the equivalent expression is: cos(x)sin3(x)\frac{\cos(x)}{\sin^3(x)}sin3(x)cos(x)
- For sec2(x)⋅tan(x)\sec^2(x) \cdot \tan(x)sec2(x)⋅tan(x), the equivalent expression is: sin(x)cos3(x)\frac{\sin(x)}{\cos^3(x)}cos3(x)sin(x)
These two expressions are now simplified forms of the original ones you provided.
