Which of the following are anti-derivatives of f (x) = sinxcosx cos” cos(2x) [and II Il and MIL

Which of the following are anti-derivatives of f (x) = sinxcosx cos” cos(2x) [and II Il and MIL

The Correct Answer and Explanation is:

To find the antiderivatives of f(x)=sin⁡(x)cos⁡(x)f(x) = \sin(x) \cos(x)f(x)=sin(x)cos(x), we can simplify the expression using trigonometric identities. Here’s how you can do it:

Step 1: Simplifying the Function

The function f(x)=sin⁡(x)cos⁡(x)f(x) = \sin(x) \cos(x)f(x)=sin(x)cos(x) can be rewritten using the double angle identity for sine:sin⁡(2x)=2sin⁡(x)cos⁡(x)\sin(2x) = 2\sin(x)\cos(x)sin(2x)=2sin(x)cos(x)

Therefore, we can express sin⁡(x)cos⁡(x)\sin(x)\cos(x)sin(x)cos(x) as:sin⁡(x)cos⁡(x)=12sin⁡(2x)\sin(x) \cos(x) = \frac{1}{2} \sin(2x)sin(x)cos(x)=21​sin(2x)

Now, the function becomes:f(x)=12sin⁡(2x)f(x) = \frac{1}{2} \sin(2x)f(x)=21​sin(2x)

Step 2: Finding the Antiderivative

To find the antiderivative of 12sin⁡(2x)\frac{1}{2} \sin(2x)21​sin(2x), we can apply the standard antiderivative rule for sine functions, which is:∫sin⁡(kx) dx=−1kcos⁡(kx)\int \sin(kx) \, dx = -\frac{1}{k} \cos(kx)∫sin(kx)dx=−k1​cos(kx)

In this case, k=2k = 2k=2, so the antiderivative of sin⁡(2x)\sin(2x)sin(2x) is:−12cos⁡(2x)-\frac{1}{2} \cos(2x)−21​cos(2x)

Thus, the antiderivative of 12sin⁡(2x)\frac{1}{2} \sin(2x)21​sin(2x) is:12⋅(−12cos⁡(2x))=−14cos⁡(2x)\frac{1}{2} \cdot \left( -\frac{1}{2} \cos(2x) \right) = -\frac{1}{4} \cos(2x)21​⋅(−21​cos(2x))=−41​cos(2x)

Step 3: Adding the Constant of Integration

We always add a constant CCC when finding an indefinite integral. So, the antiderivative is:F(x)=−14cos⁡(2x)+CF(x) = -\frac{1}{4} \cos(2x) + CF(x)=−41​cos(2x)+C

Conclusion:

The antiderivative of f(x)=sin⁡(x)cos⁡(x)f(x) = \sin(x) \cos(x)f(x)=sin(x)cos(x) is F(x)=−14cos⁡(2x)+CF(x) = -\frac{1}{4} \cos(2x) + CF(x)=−41​cos(2x)+C.


If there are multiple choices to pick from, check if this result is listed or closely matches one of the options.

Scroll to Top