Find the exact value of cos 68 cos 38 + sin 68 sin 38.

Find the exact value of cos 68 cos 38 + sin 68 sin 38.

The Correct Answer and Explanation is:

The given expression is:cos⁡(68∘)cos⁡(38∘)+sin⁡(68∘)sin⁡(38∘)\cos(68^\circ)\cos(38^\circ) + \sin(68^\circ)\sin(38^\circ)cos(68∘)cos(38∘)+sin(68∘)sin(38∘)

This is a trigonometric identity. It resembles the sum-to-product identity for cosine:cos⁡(A)cos⁡(B)+sin⁡(A)sin⁡(B)=cos⁡(A−B)\cos(A)\cos(B) + \sin(A)\sin(B) = \cos(A – B)cos(A)cos(B)+sin(A)sin(B)=cos(A−B)

Here, A=68∘A = 68^\circA=68∘ and B=38∘B = 38^\circB=38∘. Applying the identity:cos⁡(68∘)cos⁡(38∘)+sin⁡(68∘)sin⁡(38∘)=cos⁡(68∘−38∘)\cos(68^\circ)\cos(38^\circ) + \sin(68^\circ)\sin(38^\circ) = \cos(68^\circ – 38^\circ)cos(68∘)cos(38∘)+sin(68∘)sin(38∘)=cos(68∘−38∘)

Now, simplify the angle:68∘−38∘=30∘68^\circ – 38^\circ = 30^\circ68∘−38∘=30∘

So, the expression simplifies to:cos⁡(30∘)\cos(30^\circ)cos(30∘)

The exact value of cos⁡(30∘)\cos(30^\circ)cos(30∘) is known to be:cos⁡(30∘)=32\cos(30^\circ) = \frac{\sqrt{3}}{2}cos(30∘)=23​​

Therefore, the exact value of the original expression is:32\frac{\sqrt{3}}{2}23​​

Explanation:

This solution leverages a fundamental trigonometric identity to simplify the given expression. The sum-to-product identity helps convert the sum of cosines and sines into a simpler cosine expression with a difference of angles. Recognizing that cos⁡(30∘)=32\cos(30^\circ) = \frac{\sqrt{3}}{2}cos(30∘)=23​​ allows for a straightforward evaluation. This identity is particularly useful when dealing with sums of trigonometric functions with angles that are easily recognizable.

Scroll to Top