Consider ∫xsin⁡xcos⁡xdx=f(x)sin⁡2x−g(x)cos⁡2x+C

The Correct Answer and Explanation is:

Correct Answer: C

Explanation:

The problem asks for the value of f(1) + g(1) given the integral equation:
∫ x sinx cosx dx = f(x) sin2x – g(x) cos2x + C

To find the functions f(x) and g(x), we first need to solve the integral on the left side.

  1. Simplify the Integrand:
    We can simplify the term sinx cosx using the double-angle identity for sine, which is sin(2x) = 2sinx cosx. Rearranging this, we get sinx cosx = (1/2)sin(2x).
    Substituting this into the integral gives:
    ∫ x * (1/2)sin(2x) dx = (1/2) ∫ x sin(2x) dx
  2. Integration by Parts:
    Now, we can solve the integral ∫ x sin(2x) dx using integration by parts. The formula is ∫ u dv = uv – ∫ v du.
    Let’s choose:
    • u = x (so du = dx)
    • dv = sin(2x) dx (so v = ∫ sin(2x) dx = – (1/2)cos(2x))
    Applying the formula:
    ∫ x sin(2x) dx = x * (-1/2)cos(2x) – ∫ (-1/2)cos(2x) dx
    ∫ x sin(2x) dx = – (x/2)cos(2x) + (1/2) ∫ cos(2x) dx
    ∫ x sin(2x) dx = – (x/2)cos(2x) + (1/2) * (1/2)sin(2x) + C’
    ∫ x sin(2x) dx = (1/4)sin(2x) – (x/2)cos(2x) + C’
  3. Complete the Original Integral:
    Now substitute this result back into our expression from step 1:
    (1/2) ∫ x sin(2x) dx = (1/2) [ (1/4)sin(2x) – (x/2)cos(2x) + C’ ]
    ∫ x sinx cosx dx = (1/8)sin(2x) – (x/4)cos(2x) + C (where C = C’/2)
  4. Identify f(x) and g(x):
    We are given that ∫ x sinx cosx dx = f(x) sin2x – g(x) cos2x + C.
    Comparing this with our result:
    f(x) sin2x – g(x) cos2x + C = (1/8)sin(2x) – (x/4)cos(2x) + CBy matching the coefficients of the trigonometric functions, we find:
    • f(x) = 1/8
    • g(x) = x/4
  5. Calculate f(1) + g(1):
    Now we can evaluate the functions at x = 1:
    • f(1) = 1/8
    • g(1) = 1/4
    Finally, we calculate the sum:
    f(1) + g(1) = 1/8 + 1/4 = 1/8 + 2/8 = 3/8

Therefore, the value of f(1) + g(1) is 3/8.

Scroll to Top