find the remainder of 7^38 when divided by 660

find the remainder of 7^38 when divided by 660

The Correct Answer and Explanation is:

To find the remainder of 738mod  6607^{38} \mod 660738mod660, we can use the Chinese Remainder Theorem. Since 660=22×3×5×11660 = 2^2 \times 3 \times 5 \times 11660=22×3×5×11, we first need to compute 738mod  47^{38} \mod 4738mod4, 738mod  37^{38} \mod 3738mod3, 738mod  57^{38} \mod 5738mod5, and 738mod  117^{38} \mod 11738mod11, then combine the results to find 738mod  6607^{38} \mod 660738mod660.

Step 1: Calculate 738mod  47^{38} \mod 4738mod4

Since 7≡−1mod  47 \equiv -1 \mod 47≡−1mod4, we have:738≡(−1)38≡1mod  4.7^{38} \equiv (-1)^{38} \equiv 1 \mod 4.738≡(−1)38≡1mod4.

Step 2: Calculate 738mod  37^{38} \mod 3738mod3

Since 7≡1mod  37 \equiv 1 \mod 37≡1mod3, we have:738≡138≡1mod  3.7^{38} \equiv 1^{38} \equiv 1 \mod 3.738≡138≡1mod3.

Step 3: Calculate 738mod  57^{38} \mod 5738mod5

We use Fermat’s Little Theorem: since 555 is prime, 74≡1mod  57^{4} \equiv 1 \mod 574≡1mod5. We can reduce the exponent 38mod  438 \mod 438mod4, which gives:38÷4=9 remainder 2.38 \div 4 = 9 \text{ remainder } 2.38÷4=9 remainder 2.

Thus, 738≡72mod  57^{38} \equiv 7^2 \mod 5738≡72mod5. Now, 72=497^2 = 4972=49, and 49mod  5=449 \mod 5 = 449mod5=4. Therefore:738≡4mod  5.7^{38} \equiv 4 \mod 5.738≡4mod5.

Step 4: Calculate 738mod  117^{38} \mod 11738mod11

Again using Fermat’s Little Theorem for p=11p = 11p=11, we know 710≡1mod  117^{10} \equiv 1 \mod 11710≡1mod11. We reduce 38mod  1038 \mod 1038mod10, which gives:38÷10=3 remainder 8.38 \div 10 = 3 \text{ remainder } 8.38÷10=3 remainder 8.

Thus, 738≡78mod  117^{38} \equiv 7^8 \mod 11738≡78mod11. Now, calculating powers of 777 modulo 111111:72=49≡5mod  11,74=52=25≡3mod  11,78=32=9mod  11.7^2 = 49 \equiv 5 \mod 11, \quad 7^4 = 5^2 = 25 \equiv 3 \mod 11, \quad 7^8 = 3^2 = 9 \mod 11.72=49≡5mod11,74=52=25≡3mod11,78=32=9mod11.

So, 738≡9mod  117^{38} \equiv 9 \mod 11738≡9mod11.

Step 5: Solve using the Chinese Remainder Theorem

We now have the system of congruences:x≡1mod  4,x≡1mod  3,x≡4mod  5,x≡9mod  11.\begin{aligned} x &\equiv 1 \mod 4, \\ x &\equiv 1 \mod 3, \\ x &\equiv 4 \mod 5, \\ x &\equiv 9 \mod 11. \end{aligned}xxxx​≡1mod4,≡1mod3,≡4mod5,≡9mod11.​

We can start by solving the system for xmod  660x \mod 660xmod660. First, solve x≡1mod  12x \equiv 1 \mod 12x≡1mod12 (since 444 and 333 are relatively prime). Now, the system is:x≡1mod  12,x≡4mod  5,x≡9mod  11.\begin{aligned} x &\equiv 1 \mod 12, \\ x &\equiv 4 \mod 5, \\ x &\equiv 9 \mod 11. \end{aligned}xxx​≡1mod12,≡4mod5,≡9mod11.​

Next, solve x≡1mod  12x \equiv 1 \mod 12x≡1mod12 and x≡4mod  5x \equiv 4 \mod 5x≡4mod5. Using the method of successive substitution, we find that x≡13mod  60x \equiv 13 \mod 60x≡13mod60. Finally, solve the system:x≡13mod  60,x≡9mod  11.x \equiv 13 \mod 60, \quad x \equiv 9 \mod 11.x≡13mod60,x≡9mod11.

Using the method of successive substitution again, we find:x≡73mod  660.x \equiv 73 \mod 660.x≡73mod660.

Final Answer:

The remainder when 7387^{38}738 is divided by 660 is 73.

Scroll to Top