Evaluate

Evaluate : cos( 70 degree ) / sin ( 20 degree ) = cos ( 59 degree ) × cosec (31 degree ).

The Correct Answer and Explanation is:

To evaluate the given expression:cos⁡(70∘)sin⁡(20∘)=cos⁡(59∘)×csc⁡(31∘)\frac{\cos(70^\circ)}{\sin(20^\circ)} = \cos(59^\circ) \times \csc(31^\circ)sin(20∘)cos(70∘)​=cos(59∘)×csc(31∘)

We will break down each part and verify if the two sides are equal.

Step 1: Simplify Left-Hand Side

First, we simplify the left-hand side, which is:cos⁡(70∘)sin⁡(20∘)\frac{\cos(70^\circ)}{\sin(20^\circ)}sin(20∘)cos(70∘)​

Recall the trigonometric identity:cos⁡(70∘)=sin⁡(20∘)\cos(70^\circ) = \sin(20^\circ)cos(70∘)=sin(20∘)

This is because of the complementary angle identity, which states that:cos⁡(θ)=sin⁡(90∘−θ)\cos(\theta) = \sin(90^\circ – \theta)cos(θ)=sin(90∘−θ)

Thus, we have:cos⁡(70∘)sin⁡(20∘)=sin⁡(20∘)sin⁡(20∘)=1\frac{\cos(70^\circ)}{\sin(20^\circ)} = \frac{\sin(20^\circ)}{\sin(20^\circ)} = 1sin(20∘)cos(70∘)​=sin(20∘)sin(20∘)​=1

Step 2: Simplify Right-Hand Side

Now, simplify the right-hand side, which is:cos⁡(59∘)×csc⁡(31∘)\cos(59^\circ) \times \csc(31^\circ)cos(59∘)×csc(31∘)

Recall that:csc⁡(θ)=1sin⁡(θ)\csc(\theta) = \frac{1}{\sin(\theta)}csc(θ)=sin(θ)1​

So, we have:cos⁡(59∘)×csc⁡(31∘)=cos⁡(59∘)×1sin⁡(31∘)\cos(59^\circ) \times \csc(31^\circ) = \cos(59^\circ) \times \frac{1}{\sin(31^\circ)}cos(59∘)×csc(31∘)=cos(59∘)×sin(31∘)1​

Using the complementary angle identity again, we know:cos⁡(59∘)=sin⁡(31∘)\cos(59^\circ) = \sin(31^\circ)cos(59∘)=sin(31∘)

Thus:cos⁡(59∘)×1sin⁡(31∘)=sin⁡(31∘)×1sin⁡(31∘)=1\cos(59^\circ) \times \frac{1}{\sin(31^\circ)} = \sin(31^\circ) \times \frac{1}{\sin(31^\circ)} = 1cos(59∘)×sin(31∘)1​=sin(31∘)×sin(31∘)1​=1

Step 3: Conclusion

Both the left-hand side and right-hand side simplify to 1:cos⁡(70∘)sin⁡(20∘)=cos⁡(59∘)×csc⁡(31∘)=1\frac{\cos(70^\circ)}{\sin(20^\circ)} = \cos(59^\circ) \times \csc(31^\circ) = 1sin(20∘)cos(70∘)​=cos(59∘)×csc(31∘)=1

Therefore, the given equation is true.

Scroll to Top