Find all the complex roots. Write roots in rectangular form. If necessary, round to the nearest tenth. The complex sixth roots of 64
The Correct Answer and Explanation is:
To find the complex sixth roots of 646464, we can represent 646464 in polar form and use De Moivre’s Theorem.
Step 1: Express 64 in Polar Form
First, write 646464 in polar form. 646464 is a real number, so its polar form is:64=64⋅(cos0∘+isin0∘)64 = 64 \cdot (\cos 0^\circ + i \sin 0^\circ)64=64⋅(cos0∘+isin0∘)
Here, the modulus r=64r = 64r=64, and the argument θ=0∘\theta = 0^\circθ=0∘.
Step 2: Apply De Moivre’s Theorem
De Moivre’s Theorem states that the nnn-th roots of a complex number r(cosθ+isinθ)r(\cos \theta + i \sin \theta)r(cosθ+isinθ) are given by:Roots=rn[cos(θ+360kn)+isin(θ+360kn)]\text{Roots} = \sqrt[n]{r} \left[ \cos\left(\frac{\theta + 360k}{n}\right) + i \sin\left(\frac{\theta + 360k}{n}\right) \right]Roots=nr[cos(nθ+360k)+isin(nθ+360k)]
where k=0,1,2,…,n−1k = 0, 1, 2, \dots, n-1k=0,1,2,…,n−1.
In our case, r=64r = 64r=64 and n=6n = 6n=6, so the sixth roots of 646464 are:646[cos(0+360k6)+isin(0+360k6)]\sqrt[6]{64} \left[ \cos\left(\frac{0 + 360k}{6}\right) + i \sin\left(\frac{0 + 360k}{6}\right) \right]664[cos(60+360k)+isin(60+360k)]
Since 646=2\sqrt[6]{64} = 2664=2, the formula becomes:2[cos(360k6)+isin(360k6)]2 \left[ \cos\left(\frac{360k}{6}\right) + i \sin\left(\frac{360k}{6}\right) \right]2[cos(6360k)+isin(6360k)]
Step 3: Calculate the Roots
Now, substitute different values of kkk (from 0 to 5) into the equation.
- For k=0k = 0k=0: 2[cos(0∘)+isin(0∘)]=2×(1+0i)=22 \left[ \cos(0^\circ) + i \sin(0^\circ) \right] = 2 \times (1 + 0i) = 22[cos(0∘)+isin(0∘)]=2×(1+0i)=2
- For k=1k = 1k=1: 2[cos(60∘)+isin(60∘)]=2[12+i32]=1+i32 \left[ \cos(60^\circ) + i \sin(60^\circ) \right] = 2 \left[ \frac{1}{2} + i \frac{\sqrt{3}}{2} \right] = 1 + i\sqrt{3}2[cos(60∘)+isin(60∘)]=2[21+i23]=1+i3
- For k=2k = 2k=2: 2[cos(120∘)+isin(120∘)]=2[−12+i32]=−1+i32 \left[ \cos(120^\circ) + i \sin(120^\circ) \right] = 2 \left[ -\frac{1}{2} + i \frac{\sqrt{3}}{2} \right] = -1 + i\sqrt{3}2[cos(120∘)+isin(120∘)]=2[−21+i23]=−1+i3
- For k=3k = 3k=3: 2[cos(180∘)+isin(180∘)]=2×(−1+0i)=−22 \left[ \cos(180^\circ) + i \sin(180^\circ) \right] = 2 \times (-1 + 0i) = -22[cos(180∘)+isin(180∘)]=2×(−1+0i)=−2
- For k=4k = 4k=4: 2[cos(240∘)+isin(240∘)]=2[−12−i32]=−1−i32 \left[ \cos(240^\circ) + i \sin(240^\circ) \right] = 2 \left[ -\frac{1}{2} – i \frac{\sqrt{3}}{2} \right] = -1 – i\sqrt{3}2[cos(240∘)+isin(240∘)]=2[−21−i23]=−1−i3
- For k=5k = 5k=5: 2[cos(300∘)+isin(300∘)]=2[12−i32]=1−i32 \left[ \cos(300^\circ) + i \sin(300^\circ) \right] = 2 \left[ \frac{1}{2} – i \frac{\sqrt{3}}{2} \right] = 1 – i\sqrt{3}2[cos(300∘)+isin(300∘)]=2[21−i23]=1−i3
Step 4: List the Roots
The six complex roots of 646464 are:
- 222
- 1+i31 + i\sqrt{3}1+i3
- −1+i3-1 + i\sqrt{3}−1+i3
- −2-2−2
- −1−i3-1 – i\sqrt{3}−1−i3
- 1−i31 – i\sqrt{3}1−i3
These are the complex sixth roots of 646464 in rectangular form.
Conclusion:
The six complex roots of 646464 are:2,1+i3,−1+i3,−2,−1−i3,1−i32, \quad 1 + i\sqrt{3}, \quad -1 + i\sqrt{3}, \quad -2, \quad -1 – i\sqrt{3}, \quad 1 – i\sqrt{3}2,1+i3,−1+i3,−2,−1−i3,1−i3
