Silver nitrate can react with potassium chloride in aqueous solution to produce silver chloride, as shown

Silver nitrate can react with potassium chloride in aqueous solution to produce silver chloride, as shown: AgNO3 (aq) + KCl(aq) --> AgCl(s) + KNO3 (aq) The reaction of 230 mL of AgNO3 (aq) with excess aqueous potassium chloride produces 14.70 g of precipitate. The concentration of the AgNO3(aq) solution is _________ mol/L. answer to one digit after the decimal point

The Correct Answer and Explanation is:

To find the concentration of the AgNO3 solution, we will follow these steps:

Step 1: Write the balanced equation

The given reaction is:AgNO3(aq)+KCl(aq)→AgCl(s)+KNO3(aq)\text{AgNO}_3 (aq) + \text{KCl} (aq) \rightarrow \text{AgCl} (s) + \text{KNO}_3 (aq)AgNO3​(aq)+KCl(aq)→AgCl(s)+KNO3​(aq)

This shows a 1:1 molar ratio between AgNO3 and AgCl.

Step 2: Calculate moles of AgCl produced

We know the mass of AgCl precipitate is 14.70 g. To find the moles of AgCl, we use the molar mass of AgCl:Molar mass of AgCl=107.87 g/mol (Ag)+35.45 g/mol (Cl)=143.32 g/mol\text{Molar mass of AgCl} = 107.87 \, \text{g/mol (Ag)} + 35.45 \, \text{g/mol (Cl)} = 143.32 \, \text{g/mol}Molar mass of AgCl=107.87g/mol (Ag)+35.45g/mol (Cl)=143.32g/mol

Now calculate the moles of AgCl:Moles of AgCl=Mass of AgClMolar mass of AgCl=14.70 g143.32 g/mol=0.1025 mol\text{Moles of AgCl} = \frac{\text{Mass of AgCl}}{\text{Molar mass of AgCl}} = \frac{14.70 \, \text{g}}{143.32 \, \text{g/mol}} = 0.1025 \, \text{mol}Moles of AgCl=Molar mass of AgClMass of AgCl​=143.32g/mol14.70g​=0.1025mol

Step 3: Calculate moles of AgNO3

From the balanced equation, we know that 1 mole of AgNO3 produces 1 mole of AgCl. Therefore, the moles of AgNO3 are the same as the moles of AgCl:Moles of AgNO3=0.1025 mol\text{Moles of AgNO3} = 0.1025 \, \text{mol}Moles of AgNO3=0.1025mol

Step 4: Calculate the concentration of AgNO3

We are given the volume of AgNO3 solution as 230 mL (or 0.230 L). The concentration (C) of AgNO3 is given by:C=Moles of AgNO3Volume of solution in liters=0.1025 mol0.230 L=0.4457 mol/LC = \frac{\text{Moles of AgNO3}}{\text{Volume of solution in liters}} = \frac{0.1025 \, \text{mol}}{0.230 \, \text{L}} = 0.4457 \, \text{mol/L}C=Volume of solution in litersMoles of AgNO3​=0.230L0.1025mol​=0.4457mol/L

Final Answer:

The concentration of the AgNO3 solution is approximately 0.4 mol/L when rounded to one decimal place.

Scroll to Top