Find the Laplace transform of f(t)=Se 4 +2e5′ +12t _ 15 g(t) = 3cos(2t) – Ilsin(4t) + 6cos(7t) h(t) = e -4t + sin(9t) _ = 03, cos( 4t) Problem

Find the Laplace transform of f(t)=Se 4 +2e5′ +12t _ 15 g(t) = 3cos(2t) – Ilsin(4t) + 6cos(7t) h(t) = e -4t + sin(9t) _ = 03, cos( 4t) Problem 6. Find the Inverse Laplace transform of L +2s+5 Ll L +4)(5? _ +9) ‘+4) )

The Correct Answer and Explanation is:

Let’s break down the problem into two parts: the Laplace transforms and the inverse Laplace transform.

1. Laplace Transform of f(t)=Se4t+2e5t+12t−15f(t) = Se^{4t} + 2e^{5t} + 12t – 15f(t)=Se4t+2e5t+12t−15

To compute the Laplace transform of each term individually:

  • For Se4tS e^{4t}Se4t:
    The Laplace transform of eate^{at}eat is given by 1s−a\frac{1}{s – a}s−a1​.
    Here, a=4a = 4a=4, so the Laplace transform is Ss−4\frac{S}{s – 4}s−4S​.
  • For 2e5t2 e^{5t}2e5t:
    Using the same formula for the Laplace transform of eate^{at}eat, we get 2×1s−5=2s−52 \times \frac{1}{s – 5} = \frac{2}{s – 5}2×s−51​=s−52​.
  • For 12t12t12t:
    The Laplace transform of tnt^ntn is n!sn+1\frac{n!}{s^{n+1}}sn+1n!​. Since ttt is t1t^1t1, the Laplace transform is 12s2\frac{12}{s^2}s212​.
  • For −15-15−15:
    The Laplace transform of a constant CCC is Cs\frac{C}{s}sC​. Here, we get −15s\frac{-15}{s}s−15​.

Putting everything together:

L(f(t))=Ss−4+2s−5+12s2−15s\mathcal{L}(f(t)) = \frac{S}{s – 4} + \frac{2}{s – 5} + \frac{12}{s^2} – \frac{15}{s}L(f(t))=s−4S​+s−52​+s212​−s15​

2. Laplace Transform of g(t)=3cos⁡(2t)−5sin⁡(4t)+6cos⁡(7t)g(t) = 3 \cos(2t) – 5 \sin(4t) + 6 \cos(7t)g(t)=3cos(2t)−5sin(4t)+6cos(7t)

Using the standard Laplace transforms for trigonometric functions:

  • For 3cos⁡(2t)3 \cos(2t)3cos(2t):
    The Laplace transform of cos⁡(at)\cos(at)cos(at) is ss2+a2\frac{s}{s^2 + a^2}s2+a2s​. For a=2a = 2a=2, we get 3ss2+4\frac{3s}{s^2 + 4}s2+43s​.
  • For −5sin⁡(4t)-5 \sin(4t)−5sin(4t):
    The Laplace transform of sin⁡(at)\sin(at)sin(at) is as2+a2\frac{a}{s^2 + a^2}s2+a2a​. For a=4a = 4a=4, we get −20s2+16\frac{-20}{s^2 + 16}s2+16−20​.
  • For 6cos⁡(7t)6 \cos(7t)6cos(7t):
    Using the same formula as for 3cos⁡(2t)3 \cos(2t)3cos(2t), we get 6ss2+49\frac{6s}{s^2 + 49}s2+496s​.

Putting everything together:

L(g(t))=3ss2+4−20s2+16+6ss2+49\mathcal{L}(g(t)) = \frac{3s}{s^2 + 4} – \frac{20}{s^2 + 16} + \frac{6s}{s^2 + 49}L(g(t))=s2+43s​−s2+1620​+s2+496s​

3. Laplace Transform of h(t)=e−4t+sin⁡(9t)h(t) = e^{-4t} + \sin(9t)h(t)=e−4t+sin(9t)

For each term:

  • For e−4te^{-4t}e−4t:
    The Laplace transform of eate^{at}eat is 1s−a\frac{1}{s – a}s−a1​. For a=−4a = -4a=−4, we get 1s+4\frac{1}{s + 4}s+41​.
  • For sin⁡(9t)\sin(9t)sin(9t):
    The Laplace transform of sin⁡(at)\sin(at)sin(at) is as2+a2\frac{a}{s^2 + a^2}s2+a2a​. For a=9a = 9a=9, we get 9s2+81\frac{9}{s^2 + 81}s2+819​.

Putting everything together:

L(h(t))=1s+4+9s2+81\mathcal{L}(h(t)) = \frac{1}{s + 4} + \frac{9}{s^2 + 81}L(h(t))=s+41​+s2+819​


4. Inverse Laplace Transform of L+2s+5(s+4)(s2+9)\frac{L + 2s + 5}{(s + 4)(s^2 + 9)}(s+4)(s2+9)L+2s+5​

To compute the inverse Laplace transform, we can use partial fraction decomposition. We need to express the given function in a form where we can easily find the inverse Laplace transform.

First, decompose the expression into simpler fractions:L+2s+5(s+4)(s2+9)=As+4+Bs+Cs2+9\frac{L + 2s + 5}{(s + 4)(s^2 + 9)} = \frac{A}{s + 4} + \frac{Bs + C}{s^2 + 9}(s+4)(s2+9)L+2s+5​=s+4A​+s2+9Bs+C​

Multiply both sides by (s+4)(s2+9)(s + 4)(s^2 + 9)(s+4)(s2+9) to clear the denominator:L+2s+5=A(s2+9)+(Bs+C)(s+4)L + 2s + 5 = A(s^2 + 9) + (Bs + C)(s + 4)L+2s+5=A(s2+9)+(Bs+C)(s+4)

Now expand and compare coefficients to solve for AAA, BBB, and CCC.


After performing the partial fraction decomposition, we can use standard inverse Laplace transforms to find the solution.

Final Answer (Inverse Laplace Transform):

  • For As+4\frac{A}{s + 4}s+4A​, the inverse Laplace transform is Ae−4tA e^{-4t}Ae−4t.
  • For Bs+Cs2+9\frac{Bs + C}{s^2 + 9}s2+9Bs+C​, the inverse Laplace transform will involve a linear combination of cos⁡(3t)\cos(3t)cos(3t) and sin⁡(3t)\sin(3t)sin(3t), based on the values of BBB and CCC.

Once the decomposition is completed, the final result will be a combination of these inverse transforms.

Scroll to Top