Differentiate

Differentiate: cosxy=x+3y Differentiate: cos xy = x + 3y

The Correct Answer and Explanation is:

We are asked to differentiate the implicit equation:cos⁡(xy)=x+3y\cos(xy) = x + 3ycos(xy)=x+3y

To solve this, we will use implicit differentiation. The idea is to differentiate both sides of the equation with respect to xxx, treating yyy as an implicit function of xxx (i.e., y=y(x)y = y(x)y=y(x)).

Step 1: Differentiate the left side

The left-hand side involves the composite function cos⁡(xy)\cos(xy)cos(xy). We’ll need to apply the chain rule here. The derivative of cos⁡(u)\cos(u)cos(u) is −sin⁡(u)-\sin(u)−sin(u), where u=xyu = xyu=xy, so we need to differentiate xyxyxy with respect to xxx.

Using the product rule to differentiate xyxyxy, we get:ddx(xy)=xdydx+y\frac{d}{dx}(xy) = x \frac{dy}{dx} + ydxd​(xy)=xdxdy​+y

Thus, the derivative of cos⁡(xy)\cos(xy)cos(xy) with respect to xxx is:ddx[cos⁡(xy)]=−sin⁡(xy)⋅(xdydx+y)\frac{d}{dx} \left[ \cos(xy) \right] = -\sin(xy) \cdot \left( x \frac{dy}{dx} + y \right)dxd​[cos(xy)]=−sin(xy)⋅(xdxdy​+y)

Step 2: Differentiate the right side

The right-hand side of the equation is x+3yx + 3yx+3y. We differentiate each term:ddx(x)=1andddx(3y)=3dydx\frac{d}{dx}(x) = 1 \quad \text{and} \quad \frac{d}{dx}(3y) = 3 \frac{dy}{dx}dxd​(x)=1anddxd​(3y)=3dxdy​

So, the derivative of the right-hand side is:1+3dydx1 + 3 \frac{dy}{dx}1+3dxdy​

Step 3: Combine the derivatives

Now, we can equate the derivatives of both sides:−sin⁡(xy)⋅(xdydx+y)=1+3dydx-\sin(xy) \cdot \left( x \frac{dy}{dx} + y \right) = 1 + 3 \frac{dy}{dx}−sin(xy)⋅(xdxdy​+y)=1+3dxdy​

Step 4: Solve for dydx\frac{dy}{dx}dxdy​

To isolate dydx\frac{dy}{dx}dxdy​, distribute −sin⁡(xy)-\sin(xy)−sin(xy) on the left side:−sin⁡(xy)⋅xdydx−sin⁡(xy)⋅y=1+3dydx-\sin(xy) \cdot x \frac{dy}{dx} – \sin(xy) \cdot y = 1 + 3 \frac{dy}{dx}−sin(xy)⋅xdxdy​−sin(xy)⋅y=1+3dxdy​

Now, collect the terms involving dydx\frac{dy}{dx}dxdy​ on one side:−sin⁡(xy)⋅xdydx−3dydx=1+sin⁡(xy)⋅y-\sin(xy) \cdot x \frac{dy}{dx} – 3 \frac{dy}{dx} = 1 + \sin(xy) \cdot y−sin(xy)⋅xdxdy​−3dxdy​=1+sin(xy)⋅y

Factor out dydx\frac{dy}{dx}dxdy​:(−sin⁡(xy)⋅x−3)dydx=1+sin⁡(xy)⋅y\left( -\sin(xy) \cdot x – 3 \right) \frac{dy}{dx} = 1 + \sin(xy) \cdot y(−sin(xy)⋅x−3)dxdy​=1+sin(xy)⋅y

Finally, solve for dydx\frac{dy}{dx}dxdy​:dydx=1+sin⁡(xy)⋅y−sin⁡(xy)⋅x−3\frac{dy}{dx} = \frac{1 + \sin(xy) \cdot y}{-\sin(xy) \cdot x – 3}dxdy​=−sin(xy)⋅x−31+sin(xy)⋅y​

Conclusion

The derivative of yyy with respect to xxx is:dydx=1+sin⁡(xy)⋅y−sin⁡(xy)⋅x−3\frac{dy}{dx} = \frac{1 + \sin(xy) \cdot y}{-\sin(xy) \cdot x – 3}dxdy​=−sin(xy)⋅x−31+sin(xy)⋅y​

This gives the rate of change of yyy with respect to xxx in terms of both xxx and yyy.

Scroll to Top