If y = log2 sec2 x , find the derivative dy . dx
The Correct Answer and Explanation is:
We are given the function:y=log2(sec2x)y = \log_2 (\sec^2 x)y=log2(sec2x)
To find dydx\frac{dy}{dx}dxdy, we’ll differentiate this with respect to xxx using the chain rule, properties of logarithms, and the derivatives of trigonometric functions.
Step 1: Apply the change of base formula for logarithms
We can rewrite the logarithm in base 2 as:y=ln(sec2x)ln2y = \frac{\ln (\sec^2 x)}{\ln 2}y=ln2ln(sec2x)
This simplifies the problem since we can now differentiate the natural logarithm of sec2x\sec^2 xsec2x.
Step 2: Differentiate using the chain rule
We differentiate both sides of the equation with respect to xxx. First, apply the chain rule to differentiate ln(sec2x)\ln (\sec^2 x)ln(sec2x):ddx(ln(sec2x))=1sec2x⋅ddx(sec2x)\frac{d}{dx} \left( \ln (\sec^2 x) \right) = \frac{1}{\sec^2 x} \cdot \frac{d}{dx} (\sec^2 x)dxd(ln(sec2x))=sec2x1⋅dxd(sec2x)
Now, differentiate sec2x\sec^2 xsec2x. Using the chain rule, we know:ddx(sec2x)=2sec2x⋅tanx\frac{d}{dx} (\sec^2 x) = 2 \sec^2 x \cdot \tan xdxd(sec2x)=2sec2x⋅tanx
Thus, we get:ddx(ln(sec2x))=1sec2x⋅2sec2x⋅tanx=2tanx\frac{d}{dx} \left( \ln (\sec^2 x) \right) = \frac{1}{\sec^2 x} \cdot 2 \sec^2 x \cdot \tan x = 2 \tan xdxd(ln(sec2x))=sec2x1⋅2sec2x⋅tanx=2tanx
Step 3: Combine and simplify
Now, putting this into our original equation:dydx=1ln2⋅2tanx\frac{dy}{dx} = \frac{1}{\ln 2} \cdot 2 \tan xdxdy=ln21⋅2tanx
Thus, the derivative of yyy with respect to xxx is:dydx=2tanxln2\frac{dy}{dx} = \frac{2 \tan x}{\ln 2}dxdy=ln22tanx
Final Answer:
dydx=2tanxln2\frac{dy}{dx} = \frac{2 \tan x}{\ln 2}dxdy=ln22tanx
This is the derivative of y=log2(sec2x)y = \log_2 (\sec^2 x)y=log2(sec2x) with respect to xxx. The key steps involved using the chain rule and properties of logarithms to simplify the problem.
