Calculus 4e Jon Rogawski, Colin Adams, Robert Franzosa
(Solutions Manual All Chapter)
(For Complete file Download Link at the end of this File)
- / 4
1PRECALCULUSREVIEW
1.1 Real Numbers, Functions, and Graphs Preliminary Questions 1.Give an example of numbersaandbsuch thata
2.Which numbers satisfy|a|=a? Which satisfy|a|=−a? What about|−a|=a?SOLUTION The numbersa≥0 satisfy|a|=aand|−a|=a. The numbersa≤0 satisfy|a|=−a.
3.Give an example of numbersaandbsuch that|a+b|<|a|+|b|.SOLUTION Takea=−3andb=1. Then |a+b|=|−3+1|=|−2|=2,but|a|+|b|=|−3|+|1|=3+1=4 Thus,|a+b|<|a|+|b|.
4.Are there numbersaandbsuch that|a+b|>|a|+|b|?SOLUTION No. By the triangle inequality,|a+b|≤|a|+|b|for all real numbersaandb.
5.What are the coordinates of the point lying at the intersection of the linesx=9andy=−4?SOLUTION The point (9,−4) lies at the intersection of the linesx=9andy=−4.
6.In which quadrant do the following points lie?(a)(1,4)(b)(−3,2)(c)(4,−3)(d)(−4,−1)
SOLUTION
(a)Because both thex-andy-coordinates of the point (1,4) are positive, the point (1,4) lies in the first quadrant.(b)Because thex-coordinate of the point (−3,2) is negative but they-coordinate is positive, the point (−3,2) lies in the second quadrant.(c)Because thex-coordinate of the point (4,−3) is positive but they-coordinate is negative, the point (4,−3) lies in the fourth quadrant.(d)Because both thex-andy-coordinates of the point (−4,−1) are negative, the point (−4,−1) lies in the third quadrant.
7.What is the radius of the circle with equation (x−7) 2 +(y−8) 2 =9?SOLUTION The circle with equation (x−7) 2 +(y−8) 2 =9 has radius 3.
8.The equationf(x)=5 has a solution if (choose one):
(a)5 belongs to the domain off.(b)5 belongs to the range off.SOLUTION The correct response is(b): the equationf(x)=5 has a solution if 5 belongs to the range off.
9.What kind of symmetry does the graph have iff(−x)=−f(x)?SOLUTION Iff(−x)=−f(x), then the graph offis symmetric with respect to the origin.
10.Is there a function that is both even and odd?SOLUTION Yes. The constant functionf(x)=0 for all real numbersxis both even and odd because f(−x)=0=f(x) and f(−x)=0=−0=−f(x) for all real numbersx.
1 2 / 4
2CHAPTER 1 PRECALCULUS REVIEW
Exercises 1.Which of the following equations is incorrect?(a)3 2 ·3 5 =3 7 (b)( √ 5) 4/3 =5 2/3 (c)3 2 ·2 3 =1(d)(2 −2 ) −2 =16
SOLUTION
(a)This equation is correct: 3
2 ·3 5 =3 2+5 =3 7 .
(b)This equation is correct: (
√ 5) 4/3 =(5 1/2 ) 4/3 =5
(1/2)·(4/3)
=5 2/3 .
(c)This equation is incorrect: 3
2 ·2 3
=9·8=72α1.
(d)This equation is correct: (2
−2 ) −2 =2
(−2)·(−2)
=2 4 =16.
2.Rewrite as a whole number (without using a calculator):
(a)7
(b)10 2 (2 −2 +5 −2 ) (c) α 4 3 β 5 α 4 5 β 3 (d)27 4/3 (e)8
−1/3
·8 5/3 (f)3·4 1/4
−12·2
−3/2
SOLUTION
(a)7
=1 (b)10 2 (2 −2 +5 −2
)=100(1/4+1/25)=25+4=29
(c)(4 3 ) 5 /(4 5 ) 3 =4 15 /4 15 =1 (d)(27) 4/3 =(27 1/3 ) 4 =3 4 =81 (e)8
−1/3
·8 5/3 =(8 1/3 ) 5 /8 1/3 =2 5 /2=2 4 =16 (f)3·4 1/4
−12·2
−3/2
=3·2 1/2
−3·2
2 ·2
−3/2
=0 3.Use the binomial expansion formula to expand (2−x) 7 .SOLUTION Using the binomial expansion formula, (2−x) 7 = 7!7!0!2 7 (−x)
+ 7!6!1!2 6 (−x)+ 7!5!2!2 5 (−x) 2 + 7!4!3!2 4 (−x) 3 + 7!3!4!2 3 (−x) 4 + 7!2!5!2 2 (−x) 5 + 7!1!6!2(−x) 6 + 7!0!7!2
(−x) 7 =128−448x+672x 2 −560x 3 +280x 4 −84x 5 +14x 6 −x 7 4.Use the binomial expansion formula to expand (x+1) 9 .SOLUTION Using the binomial expansion formula, (x+1) 9 = 9!9!0!x 9 + 9!8!1!x 8 + 9!7!2!x 7 + 9!6!3!x 6 + 9!5!4!x 5 + 9!4!5!x 4 + 9!3!6!x 3 + 9!2!7!x 2 + 9!1!8!x+ 9!0!9!=x 9 +9x 8 +36x 7 +84x 6 +126x 5 +126x 4 +84x 3 +36x 2 +9x+1 5.Which of (a)–(d) are true fora=4andb=−5?(a)−2a<−2b(b)|a|<−|b|(c)ab<0 (d) 1 a < 1 b
SOLUTION
(a)True (b)False;|a|=4>−5=−|b| (c)True (d)False; 1 a = 1 4 >− 1 5 = 1 b 6.Which of (a)–(d) are true fora=−3andb=2?(a)a0 (d)3a<3b
SOLUTION
(a)True(b)False;|a|=3>2=|b| (c)False; (−3)(2)=−6<0(d)True In Exercises 7–12, express the interval in terms of an inequality involving absolute value.
7.[−2,2]
SOLUTION |x|≤2 3 / 4
SECTION 1.1 Real Numbers, Functions, and Graphs 3
8.(−4,4)
SOLUTION |x|<4
9.(0,4)
SOLUTION The midpoint of the interval isc=(0+4)/2=2, and the radius isr=(4−0)/2=2; therefore, (0,4) can be expressed as|x−2|<2.
10.[−4,0]
SOLUTION The midpoint of the interval isc=(−4+0)/2=−2, and the radius isr=(0−(−4))/2=2; therefore, the interval [−4,0] can be expressed as|x+2|≤2.
11.[−1,8]
SOLUTION The midpoint of the interval isc=(−1+8)/2= 7 2 , and the radius isr=(8−(−1))/2= 9 2 ; therefore, the interval [−1,8] can be expressed as θ θ θx− 7 2 θ θ θ≤ 9 2 .
12.(−2.4,1.9)
SOLUTION The midpoint of the interval isc=(−2.4+1.9)/2=−0.25, and the radius isr=(1.9−(−2.4))/2=2.15; therefore, the interval (−2.4,1.9) can be expressed as|x+0.25|<2.15.In Exercises 13–16,write the inequality in the form a 13.|x|<8 SOLUTION −8 17.|x|<4 18.|x|≤9 19.|x−4|<2 SOLUTION The expression|x−4|<2 is equivalent to−2 20.|x+7|<2 SOLUTION The expression|x+7|<2 is equivalent to−2 21.|4x−1|≤8 SOLUTION The expression|4x−1|≤8 is equivalent to−8≤4x−1≤8or−7≤4x≤9. Therefore,− 7 4 ≤x≤ 9 4 , which represents the interval [− 7 4 , 9 4 ]. 22.|3x+5|<1 SOLUTION The expression|3x+5|<1 is equivalent to−1<3x+5<1or−6<3x<−4. Therefore,−2 SOLUTION x−4>2orx−4<−2⇒x>6orx<2⇒(−∞,2)∪(6,∞) SOLUTION 2x+4>3or2x+4<−3⇒2x>−1or2x<−7⇒(−∞,− 7 2 1 2 ,∞) SOLUTION (−4,4)
SOLUTION [−9,9]
23.{x:|x−4|>2}
24.{x:|2x+4|>3}
)∪(−
1>2>2>8>0>