• wonderlic tests
  • EXAM REVIEW
  • NCCCO Examination
  • Summary
  • Class notes
  • QUESTIONS & ANSWERS
  • NCLEX EXAM
  • Exam (elaborations)
  • Study guide
  • Latest nclex materials
  • HESI EXAMS
  • EXAMS AND CERTIFICATIONS
  • HESI ENTRANCE EXAM
  • ATI EXAM
  • NR AND NUR Exams
  • Gizmos
  • PORTAGE LEARNING
  • Ihuman Case Study
  • LETRS
  • NURS EXAM
  • NSG Exam
  • Testbanks
  • Vsim
  • Latest WGU
  • AQA PAPERS AND MARK SCHEME
  • DMV
  • WGU EXAM
  • exam bundles
  • Study Material
  • Study Notes
  • Test Prep

ABCABAB - Properties van een Verdeling: A∩(B∪C)=(A∩...

Class notes Dec 27, 2025 ★★★★★ (5.0/5)
Loading...

Loading document viewer...

Page 0 of 0

Document Text

Formuleblad Inleiding Data-Analyse | T1 & T2-Stof

Properties van een Verdeling:

A∩(B∪C)=(A∩B)∪(A∩B)

A∪(B∩C)=(A∪B)∩(A∪B)

(A∩B)

C =A C ∪B C

(A∪B)

C =A C ∩B C A∪A C =Ω A∩A C =∅(alsdisjunct)

(A∩B)∪(A∩B

C )=A

Klassieke Kansdefinitie:

P(A)= N(A) N

Classic Properties:

0 ≤ P(A) ≤ 1

P(∅) = 0

P(A∪B)=P(A)+P(B)(alsdisjunct)

Empirische Kansdefinitie:

P(A)= n(A) n

Empirische Properties:

0 ≤ P(A) ≤ 1

P(∅) = 0

P(A∪B)=P(A)+P(B)(alsdisjunct)

General Definition of Kolmogorov:

P(A) ≥ 0

P(Ω) = 1

P(A∪B)=P(A)+P(B)(alsdisjunct)

Properties van een Partition:

P(A

C

)=1−P(A)

P(∅)=0

A⊂B⇒P(A)≤P(B)

P(A)=∑

i=1 S

P(A∩D

i)

P(A∪B)=P(A)+P(B)−P(A∩B)

Regels voor Tellen:

m: Mogelijkheden

k: Aantal ‘Plaatsen’

Geordend MET Terugleggen:

m k

Geordend ZONDER Terugleggen:

m!(m−k)!‘m’ nPr ‘k’ op rekenmachine

Ongeordend ZONDER Terugleggen:

m!k!(m−k)!=( m k) = m boven k ‘m’ nCr ‘k’ op rekenmachine

Binomiale Coëfficienten:

o( m 0) =1 o( m m) =1 o( m m−1) =m o( m k) =( m m−k)

Conditional Probabilities & Dependence:

P(A|B)=P

B(A)=

P(A∩B)

P(B)

note:P(B)>0

P(B|A)=P

A(B)=

P(A∩B)

P(A)

note:P(A)>0

Productregels:

P(A∩B)=P(A)⋅P(B|A)=P(B)⋅P(A|B)

P(A∩B∩C)=P(A)⋅P(B|A)⋅P(C∨A∩B)

Independence If:

P(A|B)=P(A)

  • / 1

User Reviews

★★★★★ (5.0/5 based on 1 reviews)
Login to Review
S
Student
May 21, 2025
★★★★★

I was amazed by the practical examples in this document. It helped me ace my presentation. Truly superb!

Download Document

Buy This Document

$1.00 One-time purchase
Buy Now
  • Full access to this document
  • Download anytime
  • No expiration

Document Information

Category: Class notes
Added: Dec 27, 2025
Description:

Formuleblad Inleiding Data-Analyse | T1 & T2-Stof Properties van een Verdeling: A∩(B∪C)=(A∩B)∪(A∩B) A∪(B∩C)=(A∪B)∩(A∪B) (A∩B) C =A C ∪B C (A∪B) C =A C ∩B C A∪A C =Ω A...

Unlock Now
$ 1.00