Solution Manual Brent J. Lewis, E. Nihan Onder and Andrew A. Prudil There is no Solution Manual for Chapter 1 Advanced Mathematics for Engineering Students The Essential Toolbox, 1e Brent J. Lewis, Nihan Onder, Andrew Prudi 1 / 4
Problems Chapter 2 2.1Consider the nonhomogeneous system of rst-order, linear dierential equationsy
1=y2+ coshtandy
2=y1, with boundary conditionsy1(0) = 0 andy2(0) = 1 2 . Solve this initial value problem by the following three
methods:
(a)<> Matrix methods. Use the method of variation of parameters to deter- mine the particular solution.(b)<> Laplace transform methods.(c)<> Convert the two rst-order dierential equations into a single second- order dierential equation and solve this latter equation.Solution (a) y
1=0y1+ 1y2+ cosht y
2=1y1+ 0y2+ 0 Therefore,
y
1 y
2
=
- 1
- 0
y1 y2
+
cosht
and
y1(0) y2(0)
=
1 2
:
Homogeneous equation:y
=
0 11 0
y)
Characteristic equation: det(AI) =
1 1
= 2
1 = 0:
Therefore, 2
= 1)Eigenvalues:1= +1 and2=1.
The eigenvectors are obtained from:x1+x2= 0.
For1= 1)x1=x2and we can take
1 1
:
For2=1)x1=x2and we can take
1 1
:
The homogeneous solution is:y
(h) =c1x (1) e t +c2x (2) e t , where the eigenvec-
tors are:x
(1) =
1 1
andx (2) =
1 1
:
Method of Variation of Parameters fory (p)
:
Y= [y (1) y (2) ] =
e t e t e t e t
andg=
cosht
:
Y 1 = 1 detY
y22y12 y21y11
= 1 2
e t e t e t e t
= 1 2
e t e t e t e t
:
2-1 2 / 4
Check:Y Y
1 = 1 2
e t e t e t e t
e t e t e t e t
=
- 0
- 1
Y 1 g= 1 2
e t e t e t e t
e t +e t 2
= 1 4
- +e
- +e
2t
2t
:
Therefore,u(t) = 1 4 Z t
- +e
- +e
2^t
2^t
d^t= 1 4 2 6 6 4 t+
e 2t 1 2
t+
e 2t 1 2
3 7 7 5
:
y (p) =Y u= 1 4
e t e t e t e t
2 6 6 4 t+
e 2t 1 2
t+
e 2t 1 2
3 7 7 5 = 1 4 2 6 4 te t
e t 2 + e t 2 +te t + e t 2
e t 2 te t
e t 2 + e t 2 te t
e t 2 + e t 2 3 7 5= 1 2
tcosht+ sinht tsinht
:
The last expression is obtained after factoring. The general solution is thus:
y (g) =c1
1 1
e t +c2
1 1
e t + 1 2
tcosht+ sinht tsinht
Now,
y1(0) y2(0)
=
1 2
so that:
y1(0) y2(0)
=c1
11
+c2
1 1
+
00
=
1 2
which yields:
c1+c2= 0 c1c2= 1 2
:
Thus,c1= 1 4 andc2= 1 4 :Therefore: y1(t) = 1 4 e t + 1 4 e t |{z} =
sinht 2 + t 2 cosht+
sinht 2 = t 2 cosht y2(t) = 1 4 e t
1 4 e t |{z} = cosht 2 + t 2 sinht= 1 2 [tsinhtcosht][answer]
2-2 3 / 4
(b) Using a Laplace Transform method:
sY1=Y2+ s s 2 1 )Y2=sY1 s s 2 1 sY2+ 1 2 =Y1)sY2=Y1 1 2 (2.1)
Multiplying the rst equation through by (s):
sY2=s 2 Y1+ s 2 s 2 1 sY2=Y1 1 2
Adding the above two equations and solving forY1:
Y1= s 2 (s 2 1) 2
1 2 1 (s 2 1)
Taking the inverse Laplace transform ofY1:
y1(t) =L 1 fY1g= sinht+tcosht 2
1 2 sinht= tcosht 2 [answer].
Rewriting eq. (2.1):
sY1=Y2+ s s 2 1 Y1=sY2+ 1 2
Multiplying the second equation through by (s):
sY1=Y2+ s s 2 1 sY1=s 2 Y2 s 2
Adding the above two equations and solving forY2:
Y2= s (s 2 1) 2
s 2(s 2 1)
Taking the inverse Laplace transform ofY2:
y2(t) =L 1 fY2g= tsinht 2
1 2 cosht[answer].The solutions fory1(t) andy2(t) are identical to those in part (a).2-3
- / 4