Complete Solutions Manual for Calculus of a Single Variable, Volume 1 +2 (Complete) Calculus
ELEVENTH EDITION
Ron Larson Bruce Edwards (For Complete File Download link at the end of this File) 1 / 4
Contents
Chapter P: Preparation for Calculus................................................................................................. 1
Chapter 1: Limits and Their Properties .......................................................................................... 55
Chapter 2: Differentiation ............................................................................................................ 113
Chapter 3: Applications of Differentiation .................................................................................. 211
Chapter 4: Integration .................................................................................................................. 362
Chapter 5: Logarithmic, Exponential, and Other Transcendental Functions ............................... 443
Chapter 6: Differential Equations ................................................................................................ 567 2 / 4
© 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
CHAPTER P
Preparation for Calculus Section P.1 Graphs and Models ................................................................................. 2 Section P.2 Linear Models and Rates of Change .................................................... 10 Section P.3 Functions and Their Graphs ................................................................. 21 Section P.4 Review of Trigonometric Functions .................................................... 32 Review Exercises .......................................................................................................... 41 Problem Solving ........................................................................................................... 49
- / 4
- © 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
CHAPTER P
Preparation for Calculus Section P.1 Graphs and Models
- To find the x-intercepts of the graph of an equation,
- Substitute the x- and y-values of the ordered pair into
let y be zero and solve the equation for x. To find the y-intercepts of the graph of an equation, let x be zero and solve the equation for y.
both equations. If the ordered pair satisfies both equations, then the ordered pair is a point of intersection.
3.3 2 3yx=− +
x-intercept:
()2, 0
y
-intercept: ()0, 3
Matches graph (b).
4.2 9yx=−
x-intercepts:
()()3, 0 , 3, 0−
y-intercept:
()0, 3
Matches graph (d).
5.2 3yx=−
x-intercepts:
() ()3, 0 , 3, 0−
y-intercept:
()0, 3
Matches graph (a).
6.3 yx x=−
x-intercepts:
()( )()0,0, 1,0, 1,0−
y-intercept:
()0, 0
Matches graph (c).
7.1 2 2yx=+
- 52
y x=−
9.2 4yx=−
10. ()
2 3yx=−
x 0 2 4 y 0 1 2 3 4
−2−424
−2 4 6 y x (
−2, 1)
(−4, 0)
(0, 2)
(2, 3)
(4, 4)
x 0 1 2 3 4 y 7 5 3 1 0
−2−4−6
−2 −4 2 4 8 y x
(−1, 7)
(0, 5)
(1, 3)
(2, 1)
(3, −1)
(4, −3), 0
5
- ((
x 0 2 3 y 0 4 0 x 0 1 2 3 4 5 6 y 9 4 1 0 1 4 9 x 2 −4 −2 −6 6
−4−646
(−3, −5) (3, −5)
(−2, 0)
(0, 4)
(2, 0)
y
−6−4−2
−2 2 2 4 46 6 8 10 y x
(1, 4)
(2, 1)
(3, 0)
(4, 1)
(5, 4)
(6, 9)(0, 9)
- / 4