Instructors’ Solutions Manual for Applied Linear Algebra by Peter J. Olver and Chehrzad Shakiban Second Edition Undergraduate Texts in Mathematics
ISBN 978–3–319–91040–6
Currentversion(v.2)posted July, 2019 v . 1posted August, 2018 Stuvia.com - The Marketplace to Buy and Sell your Study Material
Downloaded by: tutorsection | [email protected]
Distribution of this document is illegal Want to earn $1.236 extra per year? 1 / 4
Stuvia.com - The Marketplace to Buy and Sell your Study MaterialTable of Contents Chapter 1. Linear Algebraic Systems . . . . . . . . . . . . . . . . . 1 Chapter 2. Vector Spaces and Bases . . . . . . . . . . . . . . . . 22 Chapter 3. Inner Products and Norms . . . . . . . . . . . . . . . 40 Chapter 4. Orthogonality . . . . . . . . . . . . . . . . . . . . . 59 Chapter 5. Minimization and Least Squares . . . . . . . . . . . . . 77 Chapter 6. Equilibrium . . . . . . . . . . . . . . . . . . . . . 94 Chapter 7. Linearity . . . . . . . . . . . . . . . . . . . . . . . 105 Chapter 8. Eigenvalues and Singular Values . . . . . . . . . . . . . 124 Chapter 9. Iteration . . . . . . . . . . . . . . . . . . . . . . . 150 Chapter 10. Dynamics . . . . . . . . . . . . . . . . . . . . . . 176 Stuvia.com - The Marketplace to Buy and Sell your Study Material
Downloaded by: tutorsection | [email protected]
Distribution of this document is illegal Want to earn $1.236 extra per year? 2 / 4
Stuvia.com - The Marketplace to Buy and Sell your Study MaterialInstructors’ Solutions Manual for
Chapter 1: Linear Algebraic Systems
Note:Solutions marked with a⋆do not appear in the Students’ Solutions Manual.
1.1.1. (b) u+v= 5,− 5 2 v= 5 2 ; then use Back Substitution to solve foru= 1, v=−1.⋆(c) p+q−r= 0,−3q+ 5r= 3,−r= 6; then solve for p= 5, q=−11, r=−6.(d) Reduce the system to 2u−v+ 2w= 2,− 3 2 v+ 4w= 2,−w= 0; then solve for u= 1 3 , v=− 4 3 , w= 0.⋆(e) x 1
- 3x
2 −x 3 = 9, 1 5 x 2 − 2 5 x 3 = 2 5 ,2x 3 =−2 ; then solve for x 1 = 4, x 2 =−4, x 3
=−1.
(f) Reduce the system tox+z−2w=−3,−y+ 3w= 1,−4z−16w=−4,6w= 6; then solve forx= 2, y= 2, z=−3, w= 1.⋆1.1.2. Plugging in the values ofx , yandzgivesa+ 2b−c= 3, a−2−c= 1,1 + 2b+c= 2.Solving this system yieldsa= 4, b= 0, andc= 1.♥1.1.3. (a) With Forward Substitution, we just start with the top equation and work down.Thus 2x=−6 sox=−3. Plugging this into the second equation gives 12 + 3y= 3, and so y=−3. Plugging the values ofxandyin the third equation yields−3 + 4(−3)−z= 7, and soz=−22.⋆(c) 6= 0, use the operation to eliminate the last variable in all the preceding equations. Then, again as- suming the coefficient of the next-to-last variable is non-zero, eliminate it from all but the last two equations, and so on.⋆(d)
- and (f). Solv-
- (d) Reduce the system to
ing the reduced system by Forward Substitution reproduces the same solution (as it must): (a) The system reduces to 3 2 x= 1 7 2 , x+ 2y= 3.(b) The reduced system is 15 2 u= 1 5 2 , 3u−2v=
3 2 u= 1 2 , 7 2 u−v= 5 2 ,3u−2w=−1 . (f) Doesn’t work since, after the first reduction,zdoesn’t occur in the next to last equation.
1.2.1. (a) ×4, (b) 7, (c) 6, (d) (−2 0 1 2 ), (e)
2 −6 .
1.2.2. Examples: (a)
- 2 3
- 5 6
- 8 9
,⋆(b)
- 2 3
- 4 5
!,(c)
1 2 3 4
4 5 6 7
7 8 9 3
,(e) 1 2 3 .
1.2.4. (b)A=
- 1
3−2 !,x=
u v !,b=
5 5 !; 1 Solutions Manual Stuvia.com - The Marketplace to Buy and Sell your Study Material
Downloaded by: tutorsection | [email protected]
Distribution of this document is illegal Want to earn $1.236 extra per year? 3 / 4
Stuvia.com - The Marketplace to Buy and Sell your Study Material2Chapter 1: Instructors’ Solutions Manual ⋆(c)A= 1 1−1
2−1 3
−1−1 0
,x= p q r ,b=
3 6 ; (d)A=
2−1 2
−1−1 3
3 0 −2
,x= u v w ,b= 2 1 1 ; ⋆(e)A= 5 3−1
3 2−1
- 1 2
,x= x 1 x 2 x 3 ,b= 9 5 −1 ; (f)A=
1 0 1 −2
2−1 2 −1
0−6−4 2
1 3 2 −1
,x= x y z w ,b= −3 −5 2 1 .
1.2.5. (b)u+w=−1, u+v=−1, v+w= 2.The solution isu=−2, v= 1, w= 1.(c) 3x 1 −x 3 = 1,−2x 1 −x 2 = 0, x 1 +x 2 −3x 3 = 1.The solution isx 1 = 1 5 , x 2 =− 2 5 , x 3 =− 2 5 .⋆(d)x+y−z−w= 0,−x+z+ 2w= 4, x−y+z= 1,2y−z+w= 5.The solution isx= 2, y= 1, z= 0, w= 3.
1.2.6. (a) I =
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
,O =
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
.(b) I + O = I,I O = O I = O. No, it does not.
1.2.7. (b) undefined, (c)
- 6 0
−1 4 2
!,⋆(e)
(f)
1 11 9
3−12−12
- 8 8
,⋆(h) 9−2 14
−8 6 −17
12−3 28
.
1.2.9. 1,6,11,16.
1.2.10. (a)
- 0 0
- 0 0
0 0−1
,⋆(b) 2
- 0 0
0−2 0 0
0 0 3 0
0 0 0 −3
.
1.2.11. (a) True,⋆(b)
⋆♥1.2.12. (a) LetA=
x y z w !. ThenAD=
a x b y a z b w !=
a x a y b z b w !=D A, so ifa6 =bthese are equal if and only ify=z= 0. (b) Every 2×2 matrix commutes with
a0 0a !=aI .
Solutions Manual Stuvia.com - The Marketplace to Buy and Sell your Study Material
Downloaded by: tutorsection | [email protected]
Distribution of this document is illegal Want to earn $1.236 extra per year?
- / 4