• wonderlic tests
  • EXAM REVIEW
  • NCCCO Examination
  • Summary
  • Class notes
  • QUESTIONS & ANSWERS
  • NCLEX EXAM
  • Exam (elaborations)
  • Study guide
  • Latest nclex materials
  • HESI EXAMS
  • EXAMS AND CERTIFICATIONS
  • HESI ENTRANCE EXAM
  • ATI EXAM
  • NR AND NUR Exams
  • Gizmos
  • PORTAGE LEARNING
  • Ihuman Case Study
  • LETRS
  • NURS EXAM
  • NSG Exam
  • Testbanks
  • Vsim
  • Latest WGU
  • AQA PAPERS AND MARK SCHEME
  • DMV
  • WGU EXAM
  • exam bundles
  • Study Material
  • Study Notes
  • Test Prep

Solution Manual for - An Integrated Approach Alec J. Schramm 2 Coordi...

Testbanks Dec 30, 2025 ★★★★☆ (4.0/5)
Loading...

Loading document viewer...

Page 0 of 0

Document Text

Solution Manual for Mathematical Methods and Physical Insights An Integrated Approach

Alec J. Schramm 1 / 4

  • Coordinating Coordinates

2.1 Starting with~r=cos^{+sin^|:

^= @~r=@ j@~r=@j = cos^{+ sin^| p cos 2

  • sin
  • 2

= cos^{+ sin^|X and ^ = @~r=@ j@~r=@j = sin^{+cos^| p

2 sin 2 + 2 cos 2

=sin^{+ cos^|X Similar manipulations in spherical coordinates verify Eqn. (2.16).

2.2⇢1

⇢2 d@

ö⇢1

ö⇢2ö

@2 ö @1

@ö⇢

@# d# @ ö " !" d"

2.3 Cylindrical:d~r=

@~r @ d+ @~r @ d+ @~r @z

dz:

@~r @ = ^

@~r @

= ^jcos^{+ sin^|j= ^ @~r @ = ^

@~r @

= ^ jsin^{+cos^|j= ^

@~r @z = ^ k

@~r @z

= ^ k

Spherical:d~r=

@~r @~r dr+ @~r @ d+ @~r @

d:

@~r @r = ^r

@~r @r

= ^r

sincos^{+ sinsin^|+ cos ^ k

= ^r @~r @ = ^

@~r @

= ^

r

coscos^{+ cossin^|sin ^ k

= ^ r @~r @ = ^

@~r @

= ^ jr(sinsin^{+ sincos^|)j= ^ rsin ©Alec J. Schramm 2022. This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. 2 / 4

2.4<> From Eqn. (2.18), the matrix mapping f^{;^|; ^ kgtof^; ^ ; ^ kgisM=

cossin0 sincos0

  • 0 1
  • !.Similarly, Eqn. (2.19) gives the matrixNmappingf^{;^|; ^ kgtof^r; ^ ; ^

  • So the matrix mapping
  • spherical coordinates into cylindrical coordinates isM N 1 . Since these are rotations, we can save a lot of work invokingN 1 =N T . Then that the mapping fromf^r; ^ ; ^ gtof^; ^ ; ^ kg multiplies out to be M N T =

sincos0

  • 0 1
  • cossin0 !

:

The inverse transformation isN M T which is just the transpose ofM N T .

2.5<> Writing out the matrix equation

^r ^

^

!=

sincossinsincos coscoscossinsin sin cos 0 !^{ ^| ^ k !; it's straightforward to verify that^r^r= ^

^ = ^

^ = 1and that^r ^ = ^ , etc.

2.6<> (a)<> cartesian:x

2 +y 2 +z 2 = 1

cylindrical:

2 +z 2 = 1

spherical:r= 1

(b)<> cartesian:x

2 +y 2 = 1

cylindrical:= 1

spherical:rsin= 1

2.7<> The direction cosines are the cartesian components of a unit vector from the origin making angles; ; with the axes. Thus, given two dierent unit vectors ~ Aand ~ B, we see ~ A ~ B= cos gives the identity in (b); part (a) is just a special case of this result.

2.8<> Decomposing the vectors into cartesian components, but using spherical coordinates, ~r=rsincos^{+rsinsin^|+rcos ^ k ~r

=r

sin

cos

^{+r

sin

sin

^|+r

cos 0^ k Then ~r~r

rr

cos =rr

sinsin

coscos

+rr

sinsin

sinsin

+rr

coscos

:

Solving:

cos= = sinsin

coscos

  • sinsin
  • coscos

= sinsin

cos(

  • + coscos

:

2©Alec J. Schramm 2022. This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. 3 / 4

2.9<> Executing the steps outlined in Example 2.2:

~a= d dt

_^+ _

^

= ^+ _

_ ^+ _ _

^ +

^ + _

_ ^

= ^+ _

_

^

  • _
  • _

^ +

^

_

_ ^

= ^+ 2 _

_

^ +

^

_

_ ^ =

_

2

^+

  • 2 _
  • _

^

=

!2

^+ (+ 2 _!)

^

:

2.10<> First,jJj 2 =jJj jJj=jJ T j jJj=jJ T Jj. Then jJj 2 =

@x=@u @y=@u @x=@v @y=@v

@x=@u @x=@v @y=@u @y=@v

=

( @x @u ) 2

  • (
  • @y @u )

  • @x
  • @u @x @v + @y @u @y @v @x @v @x @u + @y @v @y @u ( @x @v ) 2

  • (
  • @y @v ) 2

Before trying to calculate this horric determinant, note that since^u@~r=@uand^v@~r=@v, the o-diagonal terms are just^u^v which vanishes for an orthogonal system. Moreover, the diagonal terms are just the scale factorsh 2 uandh 2

  • Thus
  • jJj 2 =

h 2 u0 0h 2 v

=h 2 u h 2 v

:X

2.11<> Since ^ and ^ span the tangent plane to the sphere, then using little more than^{^|= ^ kdoes

the trick:

^n ^

^ =

^{coscos+ ^|cossin ^ ksin

(^{sin+ ^|cos) = ^ kcoscos 2 + ^ kcossin 2

  • ^|sinsin+ ^{sincos
  • = ^{sincos+ ^|sinsin+ ^ kcos^rX 2.12<> Area elements (a)<> In cylindrical coordinates, the scale factors areh= 1,h=,hz= 1. Then i.<> on surface of constant,d~a= ^ d dz ii.<> on surface of constant,d~a= ^ d dz iii.<> on surface of constantz,d~a= ^ k d d (b)<> In spherical coordinates, the scale factors arehr= 1,h=r,h=rsin. Then i.<> on surface of constantr,d~a= ^r r 2 sin d d= ^r r 2 d ii.<> on surface of constant,d~a= ^ rsin dr d iii.<> on surface of constant,d~a= ^ r dr d 2.13<> (a)<> Directly leveraging Eqn. (2.12) immediately yields

radial equation:mrmr

_

2 = k r 2

angular equation:r

  • 2 _r
  • _ = 0 (b)<> Simplifying the angular equation as 1 r d dt

r 2_

= 1 mr d dt

mr 2_

= 0reveals angular mo-

mentum conservation:`mr

2_ =constant ©Alec J. Schramm 2022. This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

  • / 4

User Reviews

★★★★☆ (4.0/5 based on 1 reviews)
Login to Review
S
Student
May 21, 2025
★★★★☆

This document provided detailed explanations, which enhanced my understanding. Absolutely excellent!

Download Document

Buy This Document

$1.00 One-time purchase
Buy Now
  • Full access to this document
  • Download anytime
  • No expiration

Document Information

Category: Testbanks
Added: Dec 30, 2025
Description:

Solution Manual for Mathematical Methods and Physical Insights An Integrated Approach Alec J. Schramm 2 Coordinating Coordinates 2.1 Starting with~r=cos^{+sin^|: ^= @~r=@ j@~r=@j = cos^{+ s...

Unlock Now
$ 1.00